Martin Schlee
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Schlee.
Nature Medicine | 2005
Veit Hornung; Margit Guenthner-Biller; Carole Bourquin; Andrea Ablasser; Martin Schlee; Satoshi Uematsu; Anne M. Noronha; Muthiah Manoharan; Shizuo Akira; Antonin de Fougerolles; Stefan Endres; Gunther Hartmann
Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-α production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-α-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-α in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).
Nature Immunology | 2010
Hendrik Poeck; Michael Bscheider; Olaf Gross; Katrin Finger; Susanne Roth; Manuele Rebsamen; Nicole Hannesschläger; Martin Schlee; Simon Rothenfusser; Winfried Barchet; Hiroki Kato; Shizuo Akira; Satoshi Inoue; Stefan Endres; Christian Peschel; Gunther Hartmann; Veit Hornung; Jürgen Ruland
Interleukin 1β (IL-1β) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-κB and subsequent processing of pro-IL-1β by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus–induced production of IL-1β are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus–induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-κB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9–Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.
Nature | 2014
Delphine Goubau; Martin Schlee; Safia Deddouche; Andrea J. Pruijssers; Thomas Zillinger; Marion Goldeck; Christine Schuberth; Annemarthe G. van der Veen; Tsutomu Fujimura; Jan Rehwinkel; Jason A. Iskarpatyoti; Winfried Barchet; Janos Ludwig; Terence S. Dermody; Gunther Hartmann; Caetano Reis e Sousa
Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and β; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5′-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5′-diphosphates (5′pp). Genomes from mammalian reoviruses with 5′pp termini, 5′pp-RNA isolated from yeast L-A virus, and base-paired 5′pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5′pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5′pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5′pp-RNA, like that of 5′ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.
Nature Structural & Molecular Biology | 2010
Yanli Wang; Janos Ludwig; Christine Schuberth; Marion Goldeck; Martin Schlee; Haitao Li; Stefan Juranek; Gang Sheng; Ronald Micura; Thomas Tuschl; Gunther Hartmann; Dinshaw J. Patel
RIG-I is a cytosolic helicase that senses 5′-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5′-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5′-ppp dsRNA 12-mer, with interactions involving 5′-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5′-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5′-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2′-OCH3 RNA modifications on the interferon response.
Nature Biotechnology | 2011
Jasper G. van den Boorn; Martin Schlee; Christoph Coch; Gunther Hartmann
A natural system for ferrying RNA between cells is used to transport siRNA to the mouse brain.
Immunobiology | 2013
Martin Schlee
Abstract Initiating the immune response to invading pathogens, the innate immune system is constituted of immune receptors (pattern recognition receptors, PRR) that sense microbe-associated molecular patterns (MAMPs). Detection of pathogens triggers intracellular defense mechanisms, such as the secretion of cytokines or chemokines to alarm neighboring cells and attract or activate immune cells. The innate immune response to viruses is mostly based on PRRs that detect the unusual structure, modification or location of viral nucleic acids. Most of the highly pathogenic and emerging viruses are RNA genome-based viruses, which can give rise to zoonotic and epidemic diseases or cause viral hemorrhagic fever. As viral RNA is located in the same compartment as host RNA, PRRs in the cytosol have to discriminate between viral and endogenous RNA by virtue of their structure or modification. This challenging task is taken on by the homologous cytosolic DExD/H-box family helicases RIG-I and MDA5, which control the innate immune response to most RNA viruses. This review focuses on the molecular basis for RIG-I like receptor (RLR) activation by synthetic and natural ligands and will discuss controversial ligand definitions.
Current Opinion in Immunology | 2008
Winfried Barchet; Vera Wimmenauer; Martin Schlee; Gunther Hartmann
Short synthetic CpG oligodesoxynucleotides (CpG ODN) that activate plasmacytoid dendritic cells (PDC) and B-cells via the endosomal Toll-like receptor (TLR) 9 are the prototypical immunostimulatory nucleic acids (NAs), and their therapeutic potential is currently evaluated in numerous clinical trials. In recent years, NA recognition has emerged as a general means of virus detection by the innate immune system that involves at least seven receptors located in either the endosome or the cytosol. Endosomal TLRs are expressed selectively, and predominantly by immune cell types. By contrast, the expression of cytosolic NA receptors is ubiquitous, significantly widening the range of cell types that can be stimulated therapeutically by NAs to include even tumor cells. Here we discuss unique properties of each of these receptors, and argue that an understanding of the molecular basis of receptor-ligand interactions, and the development of chemically defined, selective ligands is required in order to fully realize the promise that NA immunetherapeutics hold.
Advanced Drug Delivery Reviews | 2013
Jasper G. van den Boorn; Juliane Daßler; Christoph Coch; Martin Schlee; Gunther Hartmann
Exosomes are nano-sized vesicles produced naturally by many cell types. They are specifically loaded with nucleic acid cargo, dependent on the exosome-producing cell and its homeostatic state. As natural intercellular shuttles of miRNA, exosomes influence an array of developmental, physiological and pathological processes in the recipient cell or tissue to which they can be selectively targeted by their tetraspanin surface-domains. By a review of current research, we illustrate here why exosomes are ideal nanocarriers for use in the targeted in vivo delivery of nucleic acids.
Nature Immunology | 2015
Anna Maria Herzner; Cristina Amparo Hagmann; Marion Goldeck; Steven Wolter; Kirsten Kübler; Sabine Wittmann; Thomas Gramberg; Liudmila Andreeva; Karl-Peter Hopfner; Christina Mertens; Thomas Zillinger; Tengchuan Jin; Tsan Sam Xiao; Eva Bartok; Christoph Coch; Damian Ackermann; Veit Hornung; Janos Ludwig; Winfried Barchet; Gunther Hartmann; Martin Schlee
Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon–inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.
Nature Reviews Immunology | 2016
Martin Schlee; Gunther Hartmann
Innate immunity against pathogens relies on an array of immune receptors to detect molecular patterns that are characteristic of the pathogens, including receptors that are specialized in the detection of foreign nucleic acids. In vertebrates, nucleic acid sensing is the dominant antiviral defence pathway. Stimulation of nucleic acid receptors results in antiviral immune responses with the production of type I interferon (IFN), as well as the expression of IFN-stimulated genes, which encode molecules such as cell-autonomous antiviral effector proteins. This Review summarizes the tremendous progress that has been made in understanding how this sophisticated immune sensory system discriminates self from non-self nucleic acids in order to reliably detect pathogenic viruses.