Wirichada Pan-ngum
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wirichada Pan-ngum.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Sompob Saralamba; Wirichada Pan-ngum; Richard J. Maude; Sue J. Lee; Joel Tarning; Niklas Lindegardh; Kesinee Chotivanich; François Nosten; Nicholas P. J. Day; Duong Socheat; Nicholas J. White; Arjen M. Dondorp; Lisa J. White
Artemisinin-resistant Plasmodium falciparum malaria has emerged in western Cambodia. Resistance is characterized by prolonged in vivo parasite clearance times (PCTs) following artesunate treatment. The biological basis is unclear. The hypothesis that delayed parasite clearance results from a stage-specific reduction in artemisinin sensitivity of the circulating young asexual parasite ring stages was examined. A mathematical model was developed, describing the intrahost parasite stage-specific pharmacokinetic–pharmacodynamic relationships. Model parameters were estimated using detailed pharmacokinetic and parasite clearance data from 39 patients with uncomplicated falciparum malaria treated with artesunate from Pailin (western Cambodia) where artemisinin resistance was evident and 40 patients from Wang Pha (northwestern Thailand) where efficacy was preserved. The mathematical model reproduced the observed parasite clearance for each patient with an accurate goodness of fit (rmsd: 0.03–0.67 in log10 scale). The parameter sets that provided the best fits with the observed in vivo data consist of a highly conserved concentration–effect relationship for the trophozoite and schizont parasite stages, but a variable relationship for the ring stages. The model-derived assessment suggests that the efficacy of artesunate on ring stage parasites is reduced significantly in Pailin. This result supports the hypothesis that artemisinin resistance mainly reflects reduced ring-stage susceptibility and predicts that doubling the frequency of dosing will accelerate clearance of artemisinin-resistant parasites.
PLOS Medicine | 2015
Ben Cooper; Maciej F. Boni; Wirichada Pan-ngum; Nicholas P. J. Day; Peter Horby; Piero Olliaro; Trudie Lang; Nicholas J. White; Lisa J. White; John Whitehead
Background Experimental treatments for Ebola virus disease (EVD) might reduce EVD mortality. There is uncertainty about the ability of different clinical trial designs to identify effective treatments, and about the feasibility of implementing individually randomised controlled trials during an Ebola epidemic. Methods and Findings A treatment evaluation programme for use in EVD was devised using a multi-stage approach (MSA) with two or three stages, including both non-randomised and randomised elements. The probabilities of rightly or wrongly recommending the experimental treatment, the required sample size, and the consequences for epidemic outcomes over 100 d under two epidemic scenarios were compared for the MSA, a sequential randomised controlled trial (SRCT) with up to 20 interim analyses, and, as a reference case, a conventional randomised controlled trial (RCT) without interim analyses. Assuming 50% 14-d survival in the population treated with the current standard of supportive care, all designs had similar probabilities of identifying effective treatments correctly, while the MSA was less likely to recommend treatments that were ineffective. The MSA led to a smaller number of cases receiving ineffective treatments and faster roll-out of highly effective treatments. For less effective treatments, the MSA had a high probability of including an RCT component, leading to a somewhat longer time to roll-out or rejection. Assuming 100 new EVD cases per day, the MSA led to between 6% and 15% greater reductions in epidemic mortality over the first 100 d for highly effective treatments compared to the SRCT. Both the MSA and SRCT led to substantially fewer deaths than a conventional RCT if the tested interventions were either highly effective or harmful. In the proposed MSA, the major threat to the validity of the results of the non-randomised components is that referral patterns, standard of care, or the virus itself may change during the study period in ways that affect mortality. Adverse events are also harder to quantify without a concurrent control group. Conclusions The MSA discards ineffective treatments quickly, while reliably providing evidence concerning effective treatments. The MSA is appropriate for the clinical evaluation of EVD treatments.
PLOS ONE | 2013
Wirichada Pan-ngum; Stuart D. Blacksell; Yoel Lubell; Sasithon Pukrittayakamee; Mark S. Bailey; H. Janaka de Silva; David G. Lalloo; Nicholas P. J. Day; Lisa J. White; Direk Limmathurotsakul
Background Accuracy of rapid diagnostic tests for dengue infection has been repeatedly estimated by comparing those tests with reference assays. We hypothesized that those estimates might be inaccurate if the accuracy of the reference assays is not perfect. Here, we investigated this using statistical modeling. Methods/Principal Findings Data from a cohort study of 549 patients suspected of dengue infection presenting at Colombo North Teaching Hospital, Ragama, Sri Lanka, that described the application of our reference assay (a combination of Dengue IgM antibody capture ELISA and IgG antibody capture ELISA) and of three rapid diagnostic tests (Panbio NS1 antigen, IgM antibody and IgG antibody rapid immunochromatographic cassette tests) were re-evaluated using Bayesian latent class models (LCMs). The estimated sensitivity and specificity of the reference assay were 62.0% and 99.6%, respectively. Prevalence of dengue infection (24.3%), and sensitivities and specificities of the Panbio NS1 (45.9% and 97.9%), IgM (54.5% and 95.5%) and IgG (62.1% and 84.5%) estimated by Bayesian LCMs were significantly different from those estimated by assuming that the reference assay was perfect. Sensitivity, specificity, PPV and NPV for a combination of NS1, IgM and IgG cassette tests on admission samples were 87.0%, 82.8%, 62.0% and 95.2%, respectively. Conclusions Our reference assay is an imperfect gold standard. In our setting, the combination of NS1, IgM and IgG rapid diagnostic tests could be used on admission to rule out dengue infection with a high level of accuracy (NPV 95.2%). Further evaluation of rapid diagnostic tests for dengue infection should include the use of appropriate statistical models.
American Journal of Tropical Medicine and Hygiene | 2014
Catrin E. Moore; Wirichada Pan-ngum; Lalith Wijedoru; Soeng Sona; Tran Vu Thieu Nga; Pham Thanh Duy; Phat Voong Vinh; Kheng Chheng; Varun Kumar; Kate Emary; Michael J. Carter; Lisa J. White; Stephen Baker; Nicholas P. J. Day; Christopher M. Parry
Rapid diagnostic tests are needed for typhoid fever (TF) diagnosis in febrile children in endemic areas. Five hundred children admitted to the hospital in Cambodia between 2009 and 2010 with documented fever (≥ 38°C) were investigated using blood cultures (BCs), Salmonella Typhi/Paratyphi A real-time polymerase chain reactions (PCRs), and a Typhoid immunoglobulin M flow assay (IgMFA). Test performance was determined by conventional methods and Bayesian latent class modeling. There were 32 cases of TF (10 BC- and PCR-positive cases, 14 BC-positive and PCR-negative cases, and 8 BC-negative and PCR-positive cases). IgMFA sensitivity was 59.4% (95% confidence interval = 41–76), and specificity was 97.8% (95% confidence interval = 96–99). The model estimate sensitivity for BC was 81.0% (95% credible interval = 54–99). The model estimate sensitivity for PCR was 37.8% (95% credible interval = 26–55), with a specificity of 98.2% (95% credible interval = 97–99). The model estimate sensitivity for IgMFA (≥ 2+) was 77.9% (95% credible interval = 58–90), with a specificity of 97.5% (95% credible interval = 95–100). The model estimates of IgMFA sensitivity and specificity were comparable with BCs and better than estimates using conventional analysis.
PLOS ONE | 2016
Yoel Lubell; Thomas Althaus; Stuart D. Blacksell; Daniel H. Paris; Mayfong Mayxay; Wirichada Pan-ngum; Lisa J. White; Nicholas P. J. Day; Paul N. Newton
Background Malaria accounts for a small fraction of febrile cases in increasingly large areas of the malaria endemic world. Point-of-care tests to improve the management of non-malarial fevers appropriate for primary care are few, consisting of either diagnostic tests for specific pathogens or testing for biomarkers of host response that indicate whether antibiotics might be required. The impact and cost-effectiveness of these approaches are relatively unexplored and methods to do so are not well-developed. Methods We model the ability of dengue and scrub typhus rapid tests to inform antibiotic treatment, as compared with testing for elevated C-Reactive Protein (CRP), a biomarker of host-inflammation. Using data on causes of fever in rural Laos, we estimate the proportion of outpatients that would be correctly classified as requiring an antibiotic and the likely cost-effectiveness of the approaches. Results Use of either pathogen-specific test slightly increased the proportion of patients correctly classified as requiring antibiotics. CRP testing was consistently superior to the pathogen-specific tests, despite heterogeneity in causes of fever. All testing strategies are likely to result in higher average costs, but only the scrub typhus and CRP tests are likely to be cost-effective when considering direct health benefits, with median cost per disability adjusted life year averted of approximately
Antimicrobial Agents and Chemotherapy | 2011
Sasithon Pukrittayakamee; Podjanee Jittamala; Kasia Stepniewska; Niklas Lindegardh; Sunee Chueasuwanchai; Wattana Leowattana; Aphiradee Phakdeeraj; Sutatip Permpunpanich; Warunee Hanpithakpong; Wirichada Pan-ngum; Caroline Fukuda; Salwaluk Panapipat; Pratap Singhasivanon; Nicholas J. White; Nicholas P. J. Day
48 USD and
PLOS ONE | 2012
Lisa J. White; Paul N. Newton; Richard J. Maude; Wirichada Pan-ngum; Jessica R. Fried; Mayfong Mayxay; Rapeephan R. Maude; Nicholas P. J. Day
94 USD, respectively. Conclusions Testing for viral infections is unlikely to be cost-effective when considering only direct health benefits to patients. Testing for prevalent bacterial pathogens can be cost-effective, having the benefit of informing not only whether treatment is required, but also as to the most appropriate antibiotic; this advantage, however, varies widely in response to heterogeneity in causes of fever. Testing for biomarkers of host inflammation is likely to be consistently cost-effective despite high heterogeneity, and can also offer substantial reductions in over-use of antimicrobials in viral infections.
Epidemiology and Infection | 2015
S. Suwanpakdee; Jaranit Kaewkungwal; Lisa J. White; Norberto Asensio; P. Ratanakorn; Pratap Singhasivanon; Nicholas P. J. Day; Wirichada Pan-ngum
ABSTRACT There is no parenteral formulation of the neuraminidase inhibitor oseltamivir, the most widely used anti-influenza virus drug. Oseltamivir resistance is an increasing problem. Zanamivir is effective against the most prevalent oseltamivir-resistant influenza viruses. A parenteral formulation of zanamivir is in development for the treatment of severe influenza. It is not known if there is any pharmacokinetic interaction between the two drugs. Sixteen healthy Thai adult volunteers were studied in an open-label, four-period, randomized two-sequence crossover pharmacokinetic study in which zanamivir was given by constant-rate infusion or slow intravenous injection either alone or together with oral oseltamivir. Plasma concentration profiles of oseltamivir, the active metabolite oseltamivir carboxylate, and zanamivir were measured by liquid chromatography-mass spectrometry-mass spectrometry. Both drugs were well tolerated alone and in combination. The maximum plasma concentrations and the areas under the plasma concentration-time curves (AUC) of oseltamivir and oseltamivir carboxylate were not significantly different when oseltamivir was given separately or together with zanamivir. Maximum plasma concentrations of zanamivir were 10% (95% confidence interval, 7 to 12%) higher when zanamivir was infused concurrently with oral oseltamivir than with infusions before or after oral oseltamivir. The plasma zanamivir total AUC was positively correlated with the total oseltamivir carboxylate AUC (Pearsons correlation coefficient [rP] = 0.720, P = 0.002, n = 16) but not with the oseltamivir AUC (rp = 0.121, n = 16). There is no clinically significant pharmacokinetic interaction between oseltamivir and zanamivir.
Health Education Journal | 2016
Ngwa Sar Dway; Ngamphol Soonthornworasiri; Kasemsak Jandee; Saranath Lawpoolsri; Wirichada Pan-ngum; Daorirk Sinthuvanich; Jaranit Kaewkungwal
Background Malaria incidence is in decline in many parts of SE Asia leading to a decreasing proportion of febrile illness that is attributable to malaria. However in the absence of rapid, affordable and accurate diagnostic tests, the non-malaria causes of these illnesses cannot be reliably identified. Studies on the aetiology of febrile illness have indicated that the causes are likely to vary by geographical location within countries (i.e. be spatially heterogeneous) and that national empirical treatment policies based on the aetiology measured in a single location could lead to inappropriate treatment. Methods Using data from Vientiane as a reference for the incidence of major febrile illnesses in the Lao Peoples Democratic Republic (Laos) and estimated incidences, plausible incidence in other Lao provinces were generated using a mathematical model for a range of national and local scale variations. For a range of treatment protocols, the mean number of appropriate treatments was predicted and the potential impact of a spatially explicit national empirical treatment protocol assessed. Findings The model predicted a negative correlation between number of appropriate treatments and the level of spatial heterogeneity. A spatially explicit national treatment protocol was predicted to increase the number of appropriate treatments by 50% for intermediate levels of spatial heterogeneity. Conclusions The results suggest that given even only moderate spatial variation, a spatially explicit treatment algorithm will result in a significant improvement in the outcome of undifferentiated fevers in Laos and other similar resource poor settings.
PLOS ONE | 2016
Kittiyod Poovorawan; Wirichada Pan-ngum; Lisa J. White; Ngamphol Soonthornworasiri; Polrat Wilairatana; Rujipat Wasitthankasem; Pisit Tangkijvanich; Yong Poovorawan
SUMMARY We studied the temporal and spatial patterns of leptospirosis, its association with flooding and animal census data in Thailand. Flood data from 2010 to 2012 were extracted from spatial information taken from satellite images. The incidence rate ratio (IRR) was used to determine the relationship between spatio-temporal flooding patterns and the number of human leptospirosis cases. In addition, the area of flood coverage, duration of waterlogging, time lags between flood events, and a number of potential animal reservoirs were considered in a sub-analysis. There was no significant temporal trend of leptospirosis over the study period. Statistical analysis showed an inconsistent relationship between IRR and flooding across years and regions. Spatially, leptospirosis occurred repeatedly and predominantly in northeastern Thailand. Our findings suggest that flooding is less influential in leptospirosis transmission than previously assumed. High incidence of the disease in the northeastern region is explained by the fact that agriculture and animal farming are important economic activities in this area. The periodic rise and fall of reported leptospirosis cases over time might be explained by seasonal exposure from rice farming activities performed during the rainy season when flood events often occur. We conclude that leptospirosis remains an occupational disease in Thailand.