Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wojciech P. Pawlowski is active.

Publication


Featured researches published by Wojciech P. Pawlowski.


Molecular Biotechnology | 1996

Transgene inheritance in plants genetically engineered by microprojectile bombardment

Wojciech P. Pawlowski; David A. Somers

Microprojectile bombardment to deliver DNA into plant cells represents a major breakthrough in the development of plant transformation technologies and accordingly has resulted in transformation of numerous species considered recalcitrant toAgrobacterium- or protoplast-mediated transformation methods. This article attempts to review the current understanding of the molecular and genetic behavior of transgenes introduced by microprojectile bombardment. The characteristic features of the transgene integration pattern resulting from DNA delivery via microprojectile bombardment include integration of the full length transgene as well as rearranged copies of the introduced DNA. Copy number of both the transgene and rearranged fragments is often highly variable. Most frequently the multiple transgene copies and rearranged fragments are inherited as a single locus. However, a variable proportion of transgenic events produced by microprojectile bombardment exhibit Mendelian ratios for monogenic and digenic segregation vs events exhibiting segregation distortion. The potential mechanisms underlying these observations are discussed.


The Plant Cell | 2003

Altered Nuclear Distribution of Recombination Protein RAD51 in Maize Mutants Suggests the Involvement of RAD51 in Meiotic Homology Recognition

Wojciech P. Pawlowski; Inna N. Golubovskaya; W. Zacheus Cande

The recombination protein RAD51 is a component of the meiotic recombination pathway and has been proposed to play a role in the homology search, a process by which homologous chromosomes find each other before they pair in the prophase of meiosis. To study the relationship between recombination and chromosome pairing, we examined the distribution of RAD51 foci on meiotic chromosomes in maize mutants with defects in chromosome pairing. The patterns of RAD51 distribution showed dramatic variation among the meiotic mutants. The mutants generally exhibited significant decreases in the number of RAD51 foci at zygotene, corresponding to the degree of their pairing defects. These results provide evidence for a key role of RAD51 structures in the homology search.


Theoretical and Applied Genetics | 2000

Association of transgene integration sites with chromosome rearrangements in hexaploid oat

Sergei K. Svitashev; E. Ananiev; Wojciech P. Pawlowski; David A. Somers

Abstract Transgene loci in 16 transgenic oat (Avena sativa L.) lines produced by microprojectile bombardment were characterized using phenotypic and genotypic segregation, Southern blot analysis, and fluorescence in situ hybridization (FISH). Twenty-five transgene loci were detected; 8 lines exhibited single transgene loci and 8 lines had 2 or 3 loci. Double FISH of the transgene and oat C- and A/D-genome-specific dispersed and clustered repeats showed no preferences in the distribution of transgene loci among the highly heterochromatic C genome and the A/D genomes of hexaploid oat, nor among chromosomes within the genomes. Transgene integration sites were detected at different locations along individual chromosomes, although the majority of transformants had transgenes integrated into subtelomeric and telomeric regions. Transgene integration sites exhibited different levels of structural complexity, ranging from simple integration structures of two apparently contiguous transgene copies to tightly linked clusters of multiple copies of transgenes interspersed with oat DNA. The size of the genomic interspersions observed in these transgene clusters was estimated from FISH results on prometaphase chromosomes to be megabases long, indicating that some transgene loci were significantly larger than previously determined by Southern blot analysis. Overall, 6 of the 25 transgene loci were associated with rearranged chromosomes. These results suggest that particle bombardment-mediated transgene integration may result from and cause chromosomal breakage and rearrangements.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis.

Wojciech P. Pawlowski; Chung-Ju Rachel Wang; Inna N. Golubovskaya; Jessica M. Szymaniak; Liang Shi; Olivier Hamant; Tong Zhu; Lisa C. Harper; William F. Sheridan; W. Zacheus Cande

Molecular mechanisms that initiate meiosis have been studied in fungi and mammals, but little is known about the mechanisms directing the meiosis transition in other organisms. To elucidate meiosis initiation in plants, we characterized and cloned the ameiotic1 (am1) gene, which affects the transition to meiosis and progression through the early stages of meiotic prophase in maize. We demonstrate that all meiotic processes require am1, including expression of meiosis-specific genes, establishment of the meiotic chromosome structure, meiosis-specific telomere behavior, meiotic recombination, pairing, synapsis, and installation of the meiosis-specific cytoskeleton. As a result, in most am1 mutants premeiotic cells enter mitosis instead of meiosis. Unlike the genes involved in initiating meiosis in yeast and mouse, am1 also has a second downstream function, whereby it regulates the transition through a novel leptotene–zygotene checkpoint, a key step in early meiotic prophase. The am1 gene encodes a plant-specific protein with an unknown biochemical function. The AM1 protein is diffuse in the nucleus during the initiation of meiosis and then binds to chromatin in early meiotic prophase I when it regulates the leptotene–zygotene progression.


Plant Molecular Biology | 1998

Irregular patterns of transgene silencing in allohexaploid oat.

Wojciech P. Pawlowski; Kimberly A. Torbert; Howard W. Rines; David A. Somers

An irregular pattern of transgene silencing was revealed in expression and inheritance studies conducted over multiple generations following transgene introduction by microprojectile bombardment of allohexaploid cultivated oat (Avena sativa L.). Expression of two transgenes, bar and uidA, delivered on the same plasmid was investigated in 23 transgenic oat lines. Twenty-one transgenic lines, each derived from an independently selected transformed tissue culture, showed expression of both bar and uidA while two lines expressed only bar. The relationship of the transgenic phenotypes to the presence of the transgenes in the study was determined using (1) phenotypic scoring combined with Southern blot analyses of progeny, (2) coexpression of the two transgenic phenotypes since the two transgenes always cosegregated, and (3) reactivation of a transgenic phenotype in self-pollinated progenies of transgenic plants that did not exhibit a transgenic phenotype. Transgene silencing was observed in 19 of the 23 transgenic lines and resulted in distorted segregation of transgenic phenotypes in 10 lines. Silencing and inheritance distortions were irregular and unpredictable. They were often reversible in a subsequent generation of self-pollinated progeny and abnormally segregating progenies were as likely to trace back to parents that exhibited normal segregation in a previous generation as to parents showing segregation distortions. Possible causes of the irregular patterns of transgene silencing are discussed.


European Journal of Plant Pathology | 1997

Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley

P.F. McGrath; J. R. Vincent; C.-H. Lei; Wojciech P. Pawlowski; Kimberly A. Torbert; W. Gu; H.F. Kaeppler; Y. Wan; P.G. Lemaux; H.R. Rines; David A. Somers; Brian A. Larkins; R. M. Lister

Tissue cultures of GAF30/Park oats were biolistically co-transformed with constructs containing the coat protein (CP) genes of the P-PAV, MAV-PS1 or NY-RPV isolates of barley yellow dwarf virus (BYDV), together with a construct containing the bar gene for herbicide resistance and the uidA reporter gene. Transformed, herbicide-resistant tissue cultures were screened by PCR for the presence of the CP genes. Fertile regenerated plants were recovered from some CP-transformed tissue cultures. T1 progeny of these plants were screened for resistance to the BYDV isolate corresponding to the introduced gene by inoculation with viruliferous aphids followed by ELISA tests. Variation in ELISA values for GAF30/Park control plants made interpretation of the data difficult, but oat plants resistant to each of the three isolates of BYDV (ELISA values less than 0.3; virus titers equivalent to less than 25% of infected controls) were identified in T1 generations. Further testing of MAV-PS1 CP-transformed lines to the T2 generation, NY-RPV CP-transformed lines to the T3 generation and P-PAV CP-transformed lines to the T4 generation identified further resistant plants. Similarly, immature embryos and calli of the barley cultivar Golden Promise were biolistically bombarded with constructs containing the CP gene of the P-PAV isolate of BYDV and the bar and uidA reporter genes, lines of self-fertile P-PAV CP-transformed barley plants were developed, and T1plants were screened for resistance to P-PAV. Eight plants from six lines showed moderate to high levels of resistance to P-PAV that correlated with the presence of the CP gene. Plants giving low ELISA values were also found in other lines, even though the CP gene was not detected in these plants. Some T2 plants derived from resistant parents that contained the CP gene were themselves highly resistant.


Genetics | 2007

Using Crossover Breakpoints in Recombinant Inbred Lines to Identify Quantitative Trait Loci Controlling the Global Recombination Frequency

Elisabeth Esch; Jessica M. Szymaniak; Heather Yates; Wojciech P. Pawlowski; Edward S. Buckler

Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination events captured in recombinant inbred mapping populations previously created for maize, wheat, Arabidopsis, and mouse, we demonstrate that substantial variation exists for genomewide crossover rates in both outcrossed and inbred plant and animal species. We also identify quantitative trait loci (QTL) that control this variation. The method that we developed and employed here holds promise for elucidating factors that regulate meiotic recombination and for creation of hyperrecombinogenic lines, which can help overcome limited recombination that hampers breeding progress.


Proceedings of the National Academy of Sciences of the United States of America | 2009

PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus

Arnaud Ronceret; Marie-Pascale Doutriaux; Inna N. Golubovskaya; Wojciech P. Pawlowski

Recombination and pairing of homologous chromosomes are critical for bivalent formation in meiotic prophase. In many organisms, including yeast, mammals, and plants, pairing and recombination are intimately interconnected. The POOR HOMOLOGOUS SYNAPSIS1 (PHS1) gene acts in coordination of chromosome pairing and early recombination steps in plants, ensuring pairing fidelity and proper repair of meiotic DNA double-strand-breaks. In phs1 mutants, chromosomes exhibit early recombination defects and frequently associate with non-homologous partners, instead of pairing with their proper homologs. Here, we show that the product of the PHS1 gene is a cytoplasmic protein that functions by controlling transport of RAD50 from cytoplasm to the nucleus. RAD50 is a component of the MRN protein complex that processes meiotic double-strand-breaks to produce single-stranded DNA ends, which act in the homology search and recombination. We demonstrate that PHS1 plays the same role in homologous pairing in both Arabidopsis and maize, whose genomes differ dramatically in size and repetitive element content. This suggests that PHS1 affects pairing of the gene-rich fraction of the genome rather than preventing pairing between repetitive DNA elements. We propose that PHS1 is part of a system that regulates the progression of meiotic prophase by controlling entry of meiotic proteins into the nucleus. We also document that in phs1 mutants in Arabidopsis, centromeres interact before pairing commences along chromosome arms. Centromere coupling was previously observed in yeast and polyploid wheat while our data suggest that it may be a more common feature of meiosis.


Plant Physiology | 2012

Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants.

Choon-Lin Tiang; Yan He; Wojciech P. Pawlowski

Chromosomes are key building blocks of eukaryotic genomes. Studies on chromosome organization and dynamics not only address questions of how chromosomes behave and what mechanisms control this behavior but also examine how chromosome organization and dynamics affect gene expression and genome


Proceedings of the National Academy of Sciences of the United States of America | 2009

Live imaging of rapid chromosome movements in meiotic prophase I in maize.

Moira J. Sheehan; Wojciech P. Pawlowski

The ability of chromosomes to move across the nuclear space is essential for the reorganization of the nucleus that takes place in early meiotic prophase. Chromosome dynamics of prophase I have been studied in budding and fission yeasts, but little is known about this process in higher eukaryotes, where genomes and chromosomes are much larger and meiosis takes a longer time to complete. This knowledge gap has been mainly caused by difficulties in culturing isolated live meiocytes of multicellular eukaryotes. To study the nuclear dynamics during meiotic prophase in maize, we established a system to observe live meiocytes inside intact anthers. We found that maize chromosomes exhibited extremely dynamic and complex motility in zygonema and pachynema. The movement patterns differed dramatically between the two stages. Chromosome movements included rotations of the entire chromatin and movements of individual chromosome segments, which were mostly telomere-led. Chromosome motility was coincident with dynamic deformations of the nuclear envelope. Both, chromosome and nuclear envelope motility depended on actin microfilaments as well as tubulin. The complexity of the nuclear movements implies that several different mechanisms affect chromosome motility in early meiotic prophase in maize. We propose that the vigorous nuclear motility provides a mechanism for homologous loci to find each other during zygonema.

Collaboration


Dive into the Wojciech P. Pawlowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan He

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Anitha Sundararajan

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Joann Mudge

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahryar F. Kianian

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge