Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Seghezzi is active.

Publication


Featured researches published by Wolfgang Seghezzi.


Oncogene | 2000

The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation

Annette O Walter; Wolfgang Seghezzi; Wouter Korver; Julie Sheung; Emma Lees

Aurora2 is a cell cycle regulated serine/threonine protein kinase which is overexpressed in many tumor cell lines. We demonstrate that Aurora2 is regulated by phosphorylation in a cell cycle dependent manner. This phosphorylation occurs on a conserved residue, Threonine 288, within the activation loop of the catalytic domain of the kinase and results in a significant increase in the enzymatic activity. Threonine 288 resides within a consensus motif for the cAMP dependent kinase and can be phosphorylated by PKA in vitro. The protein phosphatase 1 is shown to dephosphorylate this site in vitro, and in vivo the phosphorylation of T288 is induced by okadaic acid treatment. Furthermore, we show that the Aurora2 kinase is regulated by proteasome dependent degradation and that Aurora2 phosphorylated on T288 may be targeted for degradation during mitosis. Our experiments suggest that phosphorylation of T288 is important for regulation of the Aurora2 kinase both for its activity and its stability.


Molecular Cancer Therapeutics | 2010

Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor

David Parry; Timothy J. Guzi; Frances Shanahan; Nicole Davis; Deepa Prabhavalkar; Derek Wiswell; Wolfgang Seghezzi; Kamil Paruch; Michael P. Dwyer; Ronald J. Doll; Amin A. Nomeir; William T. Windsor; Thierry O. Fischmann; Yaolin Wang; Martin Oft; Taiying Chen; Paul Kirschmeier; Emma Lees

Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC50 values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy and safety parameters. Compared with flavopiridol, SCH 727965 exhibits superior activity with an improved therapeutic index. In cell-based assays, SCH 727965 completely suppressed retinoblastoma phosphorylation, which correlated with apoptosis onset and total inhibition of bromodeoxyuridine incorporation in >100 tumor cell lines of diverse origin and background. Moreover, short exposures to SCH 727965 were sufficient for long-lasting cellular effects. SCH 727965 induced regression of established solid tumors in a range of mouse models following intermittent scheduling of doses below the maximally tolerated level. This was associated with modulation of pharmacodynamic biomarkers in skin punch biopsies and rapidly reversible, mechanism-based effects on hematologic parameters. These results suggest that SCH 727965 is a potent and selective CDK inhibitor and a novel cytotoxic agent. Mol Cancer Ther; 9(8); 2344–53. ©2010 AACR.


Molecular and Cellular Biology | 1999

Cyclin E Associates with BAF155 and BRG1, Components of the Mammalian SWI-SNF Complex, and Alters the Ability of BRG1 To Induce Growth Arrest

Frances Shanahan; Wolfgang Seghezzi; David A.D. Parry; Daniel Mahony; Emma Lees

ABSTRACT SWI-SNF complexes have been implicated in transcriptional regulation by chromatin remodeling. We have identified an interaction between two components of the mammalian SWI-SNF complex and cyclin E, an essential cell cycle regulatory protein required for G1/S transition. BRG1 and BAF155, mammalian homologs of yeast SWI2 and SWI3, respectively, are found in cyclin E complexes and are phosphorylated by cyclin E-associated kinase activity. In this report, we show that overexpression of BRG1 causes growth arrest and induction of senescence-associated β-galactosidase activity, which can be overcome by cyclin E. Our results suggest that cyclin E may modulate the activity of the SWI-SNF apparatus to maintain the chromatin in a transcriptionally permissive state.


Molecular and Cellular Biology | 1999

A Novel Growth- and Cell Cycle-Regulated Protein, ASK, Activates Human Cdc7-Related Kinase and Is Essential for G1/S Transition in Mammalian Cells

Hiroyuki Kumagai; Noriko Sato; Masayuki Yamada; Daniel Mahony; Wolfgang Seghezzi; Emma Lees; Ken-ichi Arai; Hisao Masai

ABSTRACT A novel human protein, ASK (activator of S phase kinase), was identified on the basis of its ability to bind to human Cdc7-related kinase (huCdc7). ASK forms an active kinase complex with huCdc7 that is capable of phosphorylating MCM2 protein. ASK appears to be the major activator of huCdc7, since immunodepletion of ASK protein from the extract is accompanied by the loss of huCdc7-dependent kinase activity. Expression of ASK is regulated by growth factor stimulation, and levels oscillate through the cell cycle, reaching a peak during S phase. Concomitantly, the huCdc7-dependent kinase activity significantly increases when cells are in S phase. Furthermore, we have demonstrated that ASK serves an essential function for entry into S phase by showing that microinjection of ASK-specific antibodies into mammalian cells inhibited DNA replication. Our data show that ASK is a novel cyclin-like regulatory subunit of the huCdc7 kinase complex and that it plays a pivotal role in G1/S transition in mammalian cells.


Molecular Cancer Therapeutics | 2011

Targeting the Replication Checkpoint Using SCH 900776, a Potent and Functionally Selective CHK1 Inhibitor Identified Via High Content Screening

Timothy J. Guzi; Kamil Paruch; Michael P. Dwyer; Marc Labroli; Frances Shanahan; Nicole Davis; Lorena Taricani; Derek Wiswell; Wolfgang Seghezzi; Ervin Penaflor; Bhagyashree Bhagwat; Wei Wang; Danling Gu; Yunsheng Hsieh; Suining Lee; Ming Liu; David Parry

Checkpoint kinase 1 (CHK1) is an essential serine/threonine kinase that responds to DNA damage and stalled DNA replication. CHK1 is essential for maintenance of replication fork viability during exposure to DNA antimetabolites. In human tumor cell lines, ablation of CHK1 function during antimetabolite exposure led to accumulation of double-strand DNA breaks and cell death. Here, we extend these observations and confirm ablation of CHK2 does not contribute to these phenotypes and may diminish them. Furthermore, concomitant suppression of cyclin-dependent kinase (CDK) activity is sufficient to completely antagonize the desired CHK1 ablation phenotypes. These mechanism-based observations prompted the development of a high-content, cell-based screen for γ-H2AX induction, a surrogate marker for double-strand DNA breaks. This mechanism-based functional approach was used to optimize small molecule inhibitors of CHK1. Specifically, the assay was used to mechanistically define the optimal in-cell profile with compounds exhibiting varying degrees of CHK1, CHK2, and CDK selectivity. Using this approach, SCH 900776 was identified as a highly potent and functionally optimal CHK1 inhibitor with minimal intrinsic antagonistic properties. SCH 900776 exposure phenocopies short interfering RNA-mediated CHK1 ablation and interacts synergistically with DNA antimetabolite agents in vitro and in vivo to selectively induce dsDNA breaks and cell death in tumor cell backgrounds. Mol Cancer Ther; 10(4); 591–602. ©2011 AACR.


Molecular and Cellular Biology | 1998

Cyclin E Associates with Components of the Pre-mRNA Splicing Machinery in Mammalian Cells

Wolfgang Seghezzi; Katrin F. Chua; Frances Shanahan; Or Gozani; Robin Reed; Emma Lees

ABSTRACT Cyclin E-cdk2 is a critical regulator of cell cycle progression from G1 into S phase in mammalian cells. Despite this important function little is known about the downstream targets of this cyclin-kinase complex. Here we have identified components of the pre-mRNA processing machinery as potential targets of cyclin E-cdk2. Cyclin E-specific antibodies coprecipitated a number of cyclin E-associated proteins from cell lysates, among which are the spliceosome-associated proteins, SAP 114, SAP 145, and SAP 155, as well as the snRNP core proteins B′ and B. The three SAPs are all subunits of the essential splicing factor SF3, a component of U2 snRNP. Cyclin E antibodies also specifically immunoprecipitated U2 snRNA and the spliceosome from splicing extracts. We demonstrate that SAP 155 serves as a substrate for cyclin E-cdk2 in vitro and that its phosphorylation in the cyclin E complex can be inhibited by the cdk-specific inhibitor p21. SAP 155 contains numerous cdk consensus phosphorylation sites in its N terminus and is phosphorylated prior to catalytic step II of the splicing pathway, suggesting a potential role for cdk regulation. These findings provide evidence that pre-mRNA splicing may be linked to the cell cycle machinery in mammalian cells.


ACS Medicinal Chemistry Letters | 2010

Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases

Kamil Paruch; Michael P. Dwyer; Carmen Alvarez; Courtney Brown; Tin-Yau Chan; Ronald J. Doll; Kerry Keertikar; Chad E. Knutson; Brian Mckittrick; Jocelyn Rivera; Randall R. Rossman; Greg Tucker; Thierry O. Fischmann; Alan Hruza; Vincent Madison; Amin A. Nomeir; Yaolin Wang; Paul Kirschmeier; Emma Lees; David Parry; Nicole Sgambellone; Wolfgang Seghezzi; Lesley Schultz; Frances Shanahan; Derek Wiswell; Xiaoying Xu; Quiao Zhou; Ray Anthony James; Vidyadhar M. Paradkar; Haengsoon Park

Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation.


Oncogene | 2003

AuroraA overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer

Ying Jiang; Yongke Zhang; Emma Lees; Wolfgang Seghezzi

AuroraA, a mitotic kinase, is reported to be amplified and overexpressed in a variety of human tumors. Active mutants of AuroraA can transform mouse fibroblasts and form tumors in nude mice. However, the mechanism behind this oncogenic potential remains elusive. In this study, we investigated the consequences of AuroraA overexpression and showed that increased AuroraA levels compromise the mitotic spindle checkpoint triggered by nocodazole, a microtubule polymerization inhibitor. This is accomplished by disrupting the proper assembly of the mitotic checkpoint complex at the level of the Cdc20-BubR1 interaction. As a result, the spindle checkpoint complex fails to form and cells progress through mitosis without proper arrest in response to nocodazole. This ability to override the mitotic spindle checkpoint was found to be independent of AuroraA kinase activity. We conclude that maintenance of a functional balance between AuroraA and mitotic checkpoint proteins is essential for the proper progression through mitosis. This study therefore offers a possible explanation of how deregulation of AuroraA can contribute to genetic instability and tumorigenesis.


Infection and Immunity | 2015

Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab.

Zhiyong Yang; Jeremy Ramsey; Therwa Hamza; Yongrong Zhang; Shan Li; Harris G. Yfantis; Dong Lee; Lorraine D. Hernandez; Wolfgang Seghezzi; Jamie M. Furneisen; Nicole Davis; Alex G. Therien; Hanping Feng

ABSTRACT Clostridium difficile infection (CDI) represents the most prevalent cause of antibiotic-associated gastrointestinal infections in health care facilities in the developed world. Disease symptoms are caused by the two homologous exotoxins, TcdA and TcdB. Standard therapy for CDI involves administration of antibiotics that are associated with a high rate of disease recurrence, highlighting the need for novel treatment paradigms that target the toxins rather than the organism itself. A combination of human monoclonal antibodies, actoxumab and bezlotoxumab, directed against TcdA and TcdB, respectively, has been shown to decrease the rate of recurrence in patients treated with standard-of-care antibiotics. However, the exact mechanism of antibody-mediated protection is poorly understood. In this study, we show that the antitoxin antibodies are protective in multiple murine models of CDI, including systemic and local (gut) toxin challenge models, as well as primary and recurrent models of infection in mice. Systemically administered actoxumab-bezlotoxumab prevents both the damage to the gut wall and the inflammatory response, which are associated with C. difficile in these models, including in mice challenged with a strain of the hypervirulent ribotype 027. Furthermore, mutant antibodies (N297Q) that do not bind to Fcγ receptors provide a level of protection similar to that of wild-type antibodies, demonstrating that the mechanism of protection is through direct neutralization of the toxins and does not involve host effector functions. These data provide a mechanistic basis for the prevention of recurrent disease observed in CDI patients in clinical trials.


Drug Metabolism and Disposition | 2015

Establishment of a Hepatocyte-Kupffer Cell Coculture Model for Assessment of Proinflammatory Cytokine Effects on Metabolizing Enzymes and Drug Transporters

Theresa V. Nguyen; Okechukwu Ukairo; Salman R. Khetani; Michael McVay; Chitra Kanchagar; Wolfgang Seghezzi; Gulesi Ayanoglu; Onyi Irrechukwu; Raymond Evers

Elevated levels of proinflammatory cytokines associated with infection and inflammation can modulate cytochrome P450 enzymes, leading to potential disease-drug interactions and altered small-molecule drug disposition. We established a human-derived hepatocyte-Kupffer cell (Hep:KC) coculture model to assess the indirect cytokine impact on hepatocytes through stimulation of KC-mediated cytokine release and compared this model with hepatocytes alone. Characterization of Hep:KC cocultures showed an inflammation response after treatment with lipopolysaccharide and interleukin (IL)-6 (indicated by secretion of various cytokines). Additionally, IL-6 exposure upregulated acute-phase proteins (C-reactive protein, alpha-1-acid glycoprotein, and serum amyloid A2) and downregulated CYP3A4. Compared with hepatocytes alone, Hep:KC cocultures showed enhanced IL-1β–mediated effects but less impact from both IL-2 and IL-23. Hep:KC cocultures treated with IL-1β exhibited a higher release of proinflammatory cytokines, an increased upregulation of acute-phase proteins, and a larger extent of metabolic enzyme and transporter suppression. IC50 values for IL-1β–mediated CYP3A4 suppression were lower in Hep:KC cocultures (98.0–144 pg/ml) compared with hepatocytes alone (IC50 > 5000 pg/ml). Cytochrome suppression was preventable by blocking IL-1β interaction with IL-1R1 using an antagonist cytokine or an anti-IL-1β antibody. Unlike IL-1β, IL-6–mediated effects were comparable between hepatocyte monocultures and Hep:KC cocultures. IL-2 and IL-23 caused a negligible inflammation response and a minimal inhibition of CYP3A4. In both hepatocyte monocultures and Hep:KC cocultures, IL-2RB and IL-23R were undetectable, whereas IL-6R and IL-1R1 levels were higher in Hep:KC cocultures. In summary, compared with hepatocyte monocultures, the Hep:KC coculture system is a more robust in vitro model for studying the impact of proinflammatory cytokines on metabolic enzymes.

Collaboration


Dive into the Wolfgang Seghezzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge