Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frances Shanahan is active.

Publication


Featured researches published by Frances Shanahan.


Molecular Cancer Therapeutics | 2010

Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor

David Parry; Timothy J. Guzi; Frances Shanahan; Nicole Davis; Deepa Prabhavalkar; Derek Wiswell; Wolfgang Seghezzi; Kamil Paruch; Michael P. Dwyer; Ronald J. Doll; Amin A. Nomeir; William T. Windsor; Thierry O. Fischmann; Yaolin Wang; Martin Oft; Taiying Chen; Paul Kirschmeier; Emma Lees

Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC50 values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy and safety parameters. Compared with flavopiridol, SCH 727965 exhibits superior activity with an improved therapeutic index. In cell-based assays, SCH 727965 completely suppressed retinoblastoma phosphorylation, which correlated with apoptosis onset and total inhibition of bromodeoxyuridine incorporation in >100 tumor cell lines of diverse origin and background. Moreover, short exposures to SCH 727965 were sufficient for long-lasting cellular effects. SCH 727965 induced regression of established solid tumors in a range of mouse models following intermittent scheduling of doses below the maximally tolerated level. This was associated with modulation of pharmacodynamic biomarkers in skin punch biopsies and rapidly reversible, mechanism-based effects on hematologic parameters. These results suggest that SCH 727965 is a potent and selective CDK inhibitor and a novel cytotoxic agent. Mol Cancer Ther; 9(8); 2344–53. ©2010 AACR.


Molecular and Cellular Biology | 1999

Cyclin E Associates with BAF155 and BRG1, Components of the Mammalian SWI-SNF Complex, and Alters the Ability of BRG1 To Induce Growth Arrest

Frances Shanahan; Wolfgang Seghezzi; David A.D. Parry; Daniel Mahony; Emma Lees

ABSTRACT SWI-SNF complexes have been implicated in transcriptional regulation by chromatin remodeling. We have identified an interaction between two components of the mammalian SWI-SNF complex and cyclin E, an essential cell cycle regulatory protein required for G1/S transition. BRG1 and BAF155, mammalian homologs of yeast SWI2 and SWI3, respectively, are found in cyclin E complexes and are phosphorylated by cyclin E-associated kinase activity. In this report, we show that overexpression of BRG1 causes growth arrest and induction of senescence-associated β-galactosidase activity, which can be overcome by cyclin E. Our results suggest that cyclin E may modulate the activity of the SWI-SNF apparatus to maintain the chromatin in a transcriptionally permissive state.


Molecular and Cellular Biology | 2004

Role for BRG1 in Cell Cycle Control and Tumor Suppression

Kristin Hendricks; Frances Shanahan; Emma Lees

ABSTRACT Human BRG1, a subunit of the Swi/Snf chromatin remodeling apparatus, has been implicated in regulation of cellular proliferation and is a candidate tumor suppressor. Reintroduction of BRG1 into a breast tumor cell line, ALAB, carrying a defined mutation in the BRG1 gene, induced growth arrest. Gene expression data revealed that the arrest may in part be accounted for by down-regulation of select E2F target genes such as cyclin E, but more dramatically, by up-regulation of mRNAs for the cyclin-dependent kinase inhibitors p21 and p15. Protein levels of both p15 and p21 were induced, and p21 protein was recruited to a complex with cyclin-dependent kinase, CDK2, to inhibit its activity. BRG1 can associate with the p21 promoter in a p53-independent manner, suggesting that the induction of p21 by BRG1 may be direct. Further, using microarray and real-time PCR analysis we identified several novel BRG1-regulated genes. Our work provides further evidence for a role for BRG1 in the regulation of several genes involved in key steps in tumorigenesis and has revealed a potential mechanism for BRG1-induced growth arrest.


Molecular Cancer Therapeutics | 2011

Targeting the Replication Checkpoint Using SCH 900776, a Potent and Functionally Selective CHK1 Inhibitor Identified Via High Content Screening

Timothy J. Guzi; Kamil Paruch; Michael P. Dwyer; Marc Labroli; Frances Shanahan; Nicole Davis; Lorena Taricani; Derek Wiswell; Wolfgang Seghezzi; Ervin Penaflor; Bhagyashree Bhagwat; Wei Wang; Danling Gu; Yunsheng Hsieh; Suining Lee; Ming Liu; David Parry

Checkpoint kinase 1 (CHK1) is an essential serine/threonine kinase that responds to DNA damage and stalled DNA replication. CHK1 is essential for maintenance of replication fork viability during exposure to DNA antimetabolites. In human tumor cell lines, ablation of CHK1 function during antimetabolite exposure led to accumulation of double-strand DNA breaks and cell death. Here, we extend these observations and confirm ablation of CHK2 does not contribute to these phenotypes and may diminish them. Furthermore, concomitant suppression of cyclin-dependent kinase (CDK) activity is sufficient to completely antagonize the desired CHK1 ablation phenotypes. These mechanism-based observations prompted the development of a high-content, cell-based screen for γ-H2AX induction, a surrogate marker for double-strand DNA breaks. This mechanism-based functional approach was used to optimize small molecule inhibitors of CHK1. Specifically, the assay was used to mechanistically define the optimal in-cell profile with compounds exhibiting varying degrees of CHK1, CHK2, and CDK selectivity. Using this approach, SCH 900776 was identified as a highly potent and functionally optimal CHK1 inhibitor with minimal intrinsic antagonistic properties. SCH 900776 exposure phenocopies short interfering RNA-mediated CHK1 ablation and interacts synergistically with DNA antimetabolite agents in vitro and in vivo to selectively induce dsDNA breaks and cell death in tumor cell backgrounds. Mol Cancer Ther; 10(4); 591–602. ©2011 AACR.


Journal of Clinical Oncology | 2015

Phase I Dose-Escalation Trial of Checkpoint Kinase 1 Inhibitor MK-8776 As Monotherapy and in Combination With Gemcitabine in Patients With Advanced Solid Tumors

Adil Daud; Michelle T. Ashworth; Jonathan R. Strosberg; Jonathan W. Goldman; David S. Mendelson; Gregory M. Springett; Alan P. Venook; Sabine Loechner; Lee S. Rosen; Frances Shanahan; David Parry; Stuart Shumway; Jennifer A. Grabowsky; Tomoko Freshwater; Christopher Sorge; Soonmo Peter Kang; Randi Isaacs; Pamela N. Munster

PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics, and recommended phase II dose of MK-8776 (SCH 900776), a potent, selective checkpoint kinase 1 (Chk1) inhibitor, as monotherapy and in combination with gemcitabine in a first-in-human phase I clinical trial in patients with advanced solid tumor malignancies. PATIENTS AND METHODS Forty-three patients were treated by intravenous infusion with MK-8776 at seven dose levels ranging from 10 to 150 mg/m(2) as monotherapy and then in combination with gemcitabine 800 mg/m(2) (part A, n = 26) or gemcitabine 1,000 mg/m(2) (part B, n = 17). Forty percent of patients had three or more prior treatment regimens, and one third of patients had previously received gemcitabine. RESULTS As monotherapy, MK-8776 was well tolerated, with QTc prolongation (19%), nausea (16%), fatigue (14%), and constipation (14%) as the most frequent adverse effects. Combination therapy demonstrated a higher frequency of adverse effects, predominantly fatigue (63%), nausea (44%), decreased appetite (37%), thrombocytopenia (32%), and neutropenia (24%), as well as dose-related, transient QTc prolongation (17%). The median number of doses of MK-8776 administered was five doses, with relative dose-intensity of 0.96. Bioactivity was assessed by γ-H2AX ex vivo assay. Of 30 patients evaluable for response, two showed partial response, and 13 exhibited stable disease. CONCLUSION MK-8776 was well tolerated as monotherapy and in combination with gemcitabine. Early evidence of clinical efficacy was observed. The recommended phase II dose is MK-8776 200 mg plus gemcitabine 1,000 mg/m(2) on days 1 and 8 of a 21-day cycle.


Molecular and Cellular Biology | 1998

Cyclin E Associates with Components of the Pre-mRNA Splicing Machinery in Mammalian Cells

Wolfgang Seghezzi; Katrin F. Chua; Frances Shanahan; Or Gozani; Robin Reed; Emma Lees

ABSTRACT Cyclin E-cdk2 is a critical regulator of cell cycle progression from G1 into S phase in mammalian cells. Despite this important function little is known about the downstream targets of this cyclin-kinase complex. Here we have identified components of the pre-mRNA processing machinery as potential targets of cyclin E-cdk2. Cyclin E-specific antibodies coprecipitated a number of cyclin E-associated proteins from cell lysates, among which are the spliceosome-associated proteins, SAP 114, SAP 145, and SAP 155, as well as the snRNP core proteins B′ and B. The three SAPs are all subunits of the essential splicing factor SF3, a component of U2 snRNP. Cyclin E antibodies also specifically immunoprecipitated U2 snRNA and the spliceosome from splicing extracts. We demonstrate that SAP 155 serves as a substrate for cyclin E-cdk2 in vitro and that its phosphorylation in the cyclin E complex can be inhibited by the cdk-specific inhibitor p21. SAP 155 contains numerous cdk consensus phosphorylation sites in its N terminus and is phosphorylated prior to catalytic step II of the splicing pathway, suggesting a potential role for cdk regulation. These findings provide evidence that pre-mRNA splicing may be linked to the cell cycle machinery in mammalian cells.


ACS Medicinal Chemistry Letters | 2010

Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases

Kamil Paruch; Michael P. Dwyer; Carmen Alvarez; Courtney Brown; Tin-Yau Chan; Ronald J. Doll; Kerry Keertikar; Chad E. Knutson; Brian Mckittrick; Jocelyn Rivera; Randall R. Rossman; Greg Tucker; Thierry O. Fischmann; Alan Hruza; Vincent Madison; Amin A. Nomeir; Yaolin Wang; Paul Kirschmeier; Emma Lees; David Parry; Nicole Sgambellone; Wolfgang Seghezzi; Lesley Schultz; Frances Shanahan; Derek Wiswell; Xiaoying Xu; Quiao Zhou; Ray Anthony James; Vidyadhar M. Paradkar; Haengsoon Park

Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation.


Cell Cycle | 2009

Replication stress activates DNA polymerase alpha-associated Chk1.

Lorena Taricani; Frances Shanahan; David A.D. Parry

Chk1 contributes to both intra-S and DNA damage checkpoint responses. Here, we show that depletion of DNA Polα and not Polε or Polδ by siRNA induces phosphorylation of Chk1 on Ser345, thus phenocopying antimetabolite exposure. Combinatorial ablation of DNA Polα and Chk1 causes an accumulation of γ-H2A.X, a marker of double-strand DNA breaks, suggesting that activation of Chk1 in this context is essential for suppression of DNA damage. Co-depletion of DNA Polα with ATR yields similar phenotypes, suggesting that ATR and Chk1 are epistatic and required for maintenance of genomic integrity following replication stress. Significantly, Chk1 and DNA Polα can be co-immunoprecipated from native cell extracts. Moreover, following replication stress, Polα-associated Chk1 becomes rapidly phosphorylated on Ser345 in a TopBP1 and ATR-dependent manner. Hence, the ability to efficiently phosphorylate Chk1 in the context of DNA Polα complexes is correlated with suppression of DNA damage following replication stress. These findings identify DNA Polα as an important component of the signal transduction cascade that activates the intra-S checkpoint.


Cell Cycle | 2010

Phenotypic enhancement of thymidylate synthetase pathway inhibitors following ablation of Neil1 DNA glycosylase/lyase.

Lorena Taricani; Frances Shanahan; Rob H. Pierce; Timothy J. Guzi; David A.D. Parry

Inhibition of thymidine biosynthesis is a clinically-validated therapeutic approach for multiple cancers. Inhibition of thymidylate synthetase (TS) leads to a decrease in cellular TTP levels, replication stress and increased genomic incorporation of uridine (dUMP). Thus, inhibitors of this pathway (such as methotrexate) can drive a multitude of downstream cell cycle checkpoint and DNA repair processes. Genomic dUMP is recognized by the base excision repair (BER) pathway. Using a synthetic lethal siRNA-screening approach, we systematically screened for components of BER that, when ablated, enhanced methotrexate response in a high content γ-H2A.X bioassay. We observed specific ablation of the mixed function DNA glycosylase/lyase Neil1 phenotypically enhanced several inhibitors of thymidine biosynthesis, as well as cellular phenotypes downstream of gemcitabine, cytarabine and clofarabine exposure. These synthetic lethal interactions were associated with significantly enhanced accumulation of γ-H2A.X and improved growth inhibition. Significantly, following TS pathway inhibition, addition of exogenous dTTP complemented the primary Neil1 γ-H2A.X phenotypes. Similarly, co-depletion of Neil1 with Cdc45, Cdc6, Cdc7 or DNA polymerase β (PolB) suppressed Neil1 phenotypes. Conversely, co-depletion of Neil1 with the Rad17, Rad9 ATR, ATM and DNA-PK checkpoint/sensor proteins appears primarily epistatic to Neil1. These data suggest Neil1 may be a critical mediator of BER of incorporated dUMP following TS pathway inhibition


Cancer Cell | 2018

Pharmacological Induction of RAS-GTP Confers RAF Inhibitor Sensitivity in KRAS Mutant Tumors

Ivana Yen; Frances Shanahan; Mark Merchant; Christine Orr; Thomas Hunsaker; Matthew Durk; Hank La; Xiaolin Zhang; Scott E. Martin; Eva Lin; John K. Chan; Yihong Yu; Dhara Amin; Richard M. Neve; Amy Gustafson; Avinashnarayan Venkatanarayan; Scott A. Foster; Joachim Rudolph; Christiaan Klijn; Shiva Malek

Targeting KRAS mutant tumors through inhibition of individual downstream pathways has had limited clinical success. Here we report that RAF inhibitors exhibit little efficacy in KRAS mutant tumors. In combination drug screens, MEK and PI3K inhibitors synergized with pan-RAF inhibitors through an RAS-GTP-dependent mechanism. Broad cell line profiling with RAF/MEK inhibitor combinations revealed synergistic efficacy in KRAS mutant and wild-type tumors, with KRASG13D mutants exhibiting greater synergy versus KRASG12 mutant tumors. Mechanistic studies demonstrate that MEK inhibition induced RAS-GTP levels, RAF dimerization and RAF kinase activity resulting in MEK phosphorylation in synergistic tumor lines regardless of KRAS status. Taken together, our studies uncover a strategy to rewire KRAS mutant tumors to confer sensitivity to RAF kinase inhibition.

Collaboration


Dive into the Frances Shanahan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge