Woo-Bin Jung
KAIST
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Woo-Bin Jung.
ACS Nano | 2015
Soo-Yeon Cho; Seon Joon Kim; Youhan Lee; Jong-Seon Kim; Woo-Bin Jung; Hae-Wook Yoo; Jihan Kim; Hee-Tae Jung
In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
Nano Letters | 2016
Soo-Yeon Cho; Hae-Wook Yoo; Ju Ye Kim; Woo-Bin Jung; Ming Liang Jin; Jong-Seon Kim; Hwan-Jin Jeon; Hee-Tae Jung
The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure.
ACS Nano | 2014
Hwan-Jin Jeon; Hyeon Su Jeong; Yun Ho Kim; Woo-Bin Jung; Jeong Yeon Kim; Hee-Tae Jung
We introduce an advanced ultrahigh-resolution (∼ 15 nm) patterning technique that enables the fabrication of various 3D high aspect ratio multicomponents/shaped nanostructures. This methodology utilizes the repetitive secondary sputtering phenomenon under etching plasma conditions and prepatterned fabrication control. The secondary sputtering phenomenon repetitively generates an angular distribution of target particles during ion-bombardment. This method, advanced repetitive secondary sputtering lithography, provides many strategies to fabricate complex continuous patterns and multilayer/material patterns with 10 nm-scale resolution. To demonstrate the versatility of this method, we show induced vertical alignment of liquid crystals (LCs) on indium-tin-oxide (ITO) grid patterns without any alignment layers. The ITO grid pattern fabricated in this method is found to have not only an alignment capability but also electrode properties without electrical or optical damage.
Nano Letters | 2015
Soo-Yeon Cho; Hwan-Jin Jeon; Hae-Wook Yoo; Kyeong Min Cho; Woo-Bin Jung; Jong-Seon Kim; Hee-Tae Jung
Enhancement of the fluorescence intensity of quantum dot (QD)-polymer nanocomposite arrays is an important issue in QD studies because of the significant reduction of fluorescence signals of such arrays due to nonradiative processes in densely packed polymer chains in solid films. In this study, we enhance the fluorescence intensity of such arrays without significantly reducing their optical transparency. Enhanced fluorescence is achieved by hybridizing ultrathin plasmonic Au nanowalls onto the sidewalls of the arrays via single-step patterning and hybridization. The plasmonic Au nanowall induces metal-enhanced fluorescence, resulting in a maximum 7-fold enhancement of the fluorescence signals. We also prepare QD nanostructures of various shapes and sizes by controlling the dry etching time. In the near future, this facile approach can be used for fluorescence enhancement of colloidal QDs with plasmonic hybrid structures. Such structures can be used as optical substrates for imaging applications and for fabrication of QD-LED devices.
Nano Letters | 2015
Dae Woo Kim; Jong Min Ok; Woo-Bin Jung; Jong-Seon Kim; Seon Joon Kim; Hyung Ouk Choi; Yun Ho Kim; Hee-Tae Jung
Because the properties of molybdenum disulfide (MoS2) are strongly influenced by the sizes and boundaries of its domains, the direct visualization of large-area MoS2 domains is one of the most important challenges in MoS2 research. In the current study, we developed a simple and rapid method to observe and determine the boundaries of MoS2 domains. The technique, which depends on observations of nematic liquid crystal textures on the MoS2 surface, does not damage the sample and is not limited by domain size. Thus, this approach should significantly aid not only efforts aimed at gaining an understanding of the relationships between grain boundaries and properties of MoS2 but also those focusing on how domain sizes are controlled during large-area synthesis.
Nano Letters | 2015
Kiok Kwon; Jong Min Ok; Yun Ho Kim; Jong-Seon Kim; Woo-Bin Jung; Soo-Yeon Cho; Hee-Tae Jung
Developing large-area, single domain of organic soft-building blocks such as block copolymers, colloids, and supramolecular materials is one of the most important issues in the materials science and nanotechnology. Owing to their small sizes, complex molecular architectures, and high mobility, supramolecular materials are not well-suited for building large area, single domain structures. In the described study, a single domain of supramolecular columnar dendrimers was created over large area. The columnar structures in these domains have smaller (4.5 nm) diameters, higher area densities (ca. 36 Tera-dots/in(2)) and larger domains (>0.1 × 0.1 mm(2)) than those of all existing BCP and colloidal assemblies. By simply annealing dendrimer thin films between two flat solid surfaces, single domains of hexagonal columnar structures are created over large macroscopic areas. Observations made in this effort should serve as the foundation for the design of new routes for bottom-up lithography based on supramolecular building blocks.
Advanced Materials | 2016
Hwan-Jin Jeon; Ju-Young Kim; Woo-Bin Jung; Hyeon-Su Jeong; Yun Ho Kim; Dong Ok Shin; Seong-Jun Jeong; Jonghwa Shin; Sang Ouk Kim; Hee-Tae Jung
High-resolution (10 nm), high-areal density, high-aspect ratio (>5), and morphologically complex nanopatterns are fabricated from a single conventional block copolymer (BCP) structure with a 70 nm scale resolution and an aspect ratio of 1, through the secondary-sputtering phenomenon during the Ar-ion-bombardment process. This approach provides a foundation for the design of new routes to BCP lithography.
Advanced Materials | 2015
Woo-Bin Jung; Hyeon Su Jeong; Hwan-Jin Jeon; Yun Ho Kim; Jeong Yeon Hwang; Jae-Hoon Kim; Hee-Tae Jung
A novel polymer-layer-free system for liquid-crystal alignment is demonstrated by various shaped indium tin oxide (ITO) patterns. Liquid crystals are aligned along the ITO line pattern and secondary sputtering lithography can change the shape of the ITO line pattern. Different shapes can control the direction and size of the pretilt angle. This effect eliminates defects and reduces the response time.
Science Advances | 2018
Geun-Tae Yun; Woo-Bin Jung; Myung Seok Oh; Gyu Min Jang; Jieung Baek; Nam Il Kim; Sung Gap Im; Hee-Tae Jung
First springtail-inspired omniphobic surface by hierarchical structure to repel liquids even with high pressure of droplets. Both high static repellency and pressure resistance are critical to achieving a high-performance omniphobic surface. The cuticles of springtails have both of these features, which result from their hierarchical structure composed of primary doubly reentrant nanostructures on secondary microgrooves. Despite intensive efforts, none of the previous studies that were inspired by the springtail were able to simultaneously achieve both high static repellency and pressure resistance because of a general trade-off between these characteristics. We demonstrate for the first time a springtail-inspired superomniphobic surface displaying both features by fabricating a hierarchical system consisting of serif-T–shaped nanostructures on microscale wrinkles, overcoming previous limitations. Our biomimetic strategy yielded a surface showing high repellency to diverse liquids, from water to ethanol, with a contact angle above 150°. Simultaneously, the surface was able to endure extreme pressure resulting from the impacts of drops of water and of ethylene glycol with We >> 200, and of ethanol with We ~ 53, which is the highest pressure resistance ever reported. Overall, the omniphobicity of our springtail-inspired fabricated system was found to be superior to that of the natural springtail cuticle itself.
Advanced Materials | 2018
Won-Kyu Lee; Woo-Bin Jung; Dongjoon Rhee; Jingtian Hu; Young-Ah Lucy Lee; Christian Jacobson; Hee-Tae Jung; Teri W. Odom
This paper describes polymeric nanostructures with dynamically tunable wetting properties. Centimeter-scale areas of monolithic nanoridges can be generated by strain relief of thermoplastic polyolefin films with fluoropolymer skin layers. Changing the amount of strain results in polyolefin ridges with aspect ratios greater than four with controlled feature densities. Surface chemistry and topography are demonstrated to be able to be tailored by SF6 -plasma etching to access multiple wetting states: Wenzel, Cassie-Baxter, and Cassie-impregnating states. Reversible transitions among the wetting states can be realized in a programmable manner by cyclic stretching and reshrinking the patterned substrates without delamination and cracking.