Xia Lee
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xia Lee.
Lancet Infectious Diseases | 2016
Bobbi S. Pritt; Paul S. Mead; Diep K. Hoang Johnson; David F. Neitzel; Laurel B. Respicio-Kingry; Jeffrey P. Davis; Elizabeth Schiffman; Lynne M. Sloan; Martin E. Schriefer; Adam J. Replogle; Susan M. Paskewitz; Julie Ray; Jenna Bjork; Christopher R. Steward; Alecia Deedon; Xia Lee; Luke C. Kingry; Tracy K. Miller; Michelle A. Feist; Elitza S. Theel; Robin Patel; Cole L. Irish; Jeannine M. Petersen
BACKGROUND Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. It is a multisystem disease caused by Borrelia burgdorferi sensu lato genospecies and characterised by tissue localisation and low spirochaetaemia. In this study we aimed to describe a novel Borrelia species causing Lyme borreliosis in the USA. METHODS At the Mayo clinic, from 2003 to 2014, we tested routine clinical diagnostic specimens from patients in the USA with PCR targeting the oppA1 gene of B burgdorferi sensu lato. We identified positive specimens with an atypical PCR result (melting temperature outside of the expected range) by sequencing, microscopy, or culture. We collected Ixodes scapularis ticks from regions of suspected patient tick exposure and tested them by oppA1 PCR. FINDINGS 100 545 specimens were submitted by physicians for routine PCR from Jan 1, 2003 to Sept 30, 2014. From these samples, six clinical specimens (five blood, one synovial fluid) yielded an atypical oppA1 PCR product, but no atypical results were detected before 2012. Five of the six patients with atypical PCR results had presented with fever, four had diffuse or focal rash, three had symptoms suggestive of neurological inclusion, and two were admitted to hospital. The sixth patient presented with knee pain and swelling. Motile spirochaetes were seen in blood samples from one patient and cultured from blood samples from two patients. Among the five blood specimens, the median oppA1 copy number was 180 times higher than that in 13 specimens that tested positive for B burgdorferi sensu stricto during the same time period. Multigene sequencing identified the spirochaete as a novel B burgdorferi sensu lato genospecies. This same genospecies was detected in ticks collected at a probable patient exposure site. INTERPRETATION We describe a new pathogenic Borrelia burgdorferi sensu lato genospecies (candidatus Borrelia mayonii) in the upper midwestern USA, which causes Lyme borreliosis with unusually high spirochaetaemia. Clinicians should be aware of this new B burgdorferi sensu lato genospecies, its distinct clinical features, and the usefulness of oppA1 PCR for diagnosis. FUNDING US Centers for Disease Control and Prevention Epidemiology and Laboratory Capacity for Infectious Diseases (ELC) Cooperative Agreement and Mayo Clinic Small Grant programme.
International Journal of Systematic and Evolutionary Microbiology | 2016
Bobbi S. Pritt; Laurel B. Respicio-Kingry; Lynne M. Sloan; Martin E. Schriefer; Adam J. Replogle; Jenna Bjork; Gongping Liu; Luke C. Kingry; Paul S. Mead; David F. Neitzel; Elizabeth Schiffman; Diep K. Hoang Johnson; Jeffrey P. Davis; Susan M. Paskewitz; David Boxrud; Alecia Deedon; Xia Lee; Tracy K. Miller; Michelle A. Feist; Christopher R. Steward; Elitza S. Theel; Robin Patel; Cole L. Irish; Jeannine M. Petersen
Lyme borreliosis (LB) is a multisystem disease caused by spirochetes in the Borrelia burgdorferisensu lato (Bbsl) genospecies complex. We previously described a novel Bbsl genospecies (type strain MN14-1420T) that causes LB among patients with exposures to ticks in the upper midwestern USA. Patients infected with the novel Bbsl genospecies demonstrated higher levels of spirochetemia and somewhat differing clinical symptoms as compared with those infected with other Bbsl genospecies. The organism was detected from human specimens using PCR, microscopy, serology and culture. The taxonomic status was determined using an eight-housekeeping-gene (uvrA, rplB, recG, pyrG, pepX, clpX, clpA and nifS) multi-locus sequence analysis (MLSA) and comparison of 16S rRNA gene, flaB, rrf-rrl, ospC and oppA2 nucleotide sequences. Using a system threshold of 98.3 % similarity for delineation of Bbsl genospecies by MLSA, we demonstrated that the novel species is a member of the Bbsl genospecies complex, most closely related to B. burgdorferisensu stricto (94.7-94.9 % similarity). This same species was identified in Ixodes scapularis ticks collected in Minnesota and Wisconsin. This novel species, Borrelia mayonii sp. nov, is formally described here. The type strain, MN14-1420, is available through the Deutsche Sammlung von Mikroorganismen und Zelkulturen GmbH (DSM 102811) and the American Type Culture Collection (ATCC BAA-2743).
Journal of Medical Entomology | 2013
Xia Lee; Kristin Hardy; Diep K. Hoang Johnson; Susan M. Paskewitz
ABSTRACT As a result of the increasing incidence of Lyme disease and other tick-borne pathogens in Wisconsin, we assessed the distribution of adult blacklegged ticks through collections from hunter-killed deer in 2008 and 2009 and compared results with prior surveys beginning in 1981. Volunteers staffed 21 Wisconsin Department of Natural Resources registration stations in 21 counties in the eastern half of Wisconsin in 2008 and 10 stations in seven counties in northwestern Wisconsin in 2009. In total, 786 and 300 white-tailed deer (Odocoileus virginianus) were examined in 2008 and 2009, respectively. All but three stations in 2008 were positive for ticks and all stations in 2009 were positive for ticks. The three sites negative for ticks occurred within the eastern half of Wisconsin. The results indicate that range expansion of Ixodes scapularis (Say) is continuing and the risk of tick exposure is increasing, especially in the eastern one-third of the state.
Ticks and Tick-borne Diseases | 2015
Caroline G. Castillo; Marina E. Eremeeva; Susan M. Paskewitz; Lynne M. Sloan; Xia Lee; William E. Irwin; Stefan Tonsberg; Bobbi S. Pritt
An Ehrlichia muris-like (EML) bacterium was recently detected in humans and Ixodes scapularis ticks in Minnesota and Wisconsin. The reservoir for this agent is unknown. To investigate the occurrence of the EML agent, groEL PCR testing and sequencing was performed on blood from small mammals and white-tailed deer that were collected in areas where human and tick infections were previously demonstrated. DNA of the EML agent was detected in two Peromyscus leucopus of 146 small mammals (1.4%); while 181 O. virginianus tested negative. This report provides the first evidence that DNA from the EML agent is found in P. leucopus, the same animal that is a reservoir for Anaplasma phagocytophilum in this region. The role of white-tailed deer remains inconclusive. Further sampling is warranted to understand the spatial and temporal distribution, transmission and maintenance of this pathogen.
Journal of Medical Entomology | 2014
Xia Lee; David R. Coyle; Diep K. Hoang Johnson; Matthew Murphy; Michael A. McGeehin; Robert J. Murphy; Kenneth F. Raffa; Susan M. Paskewitz
ABSTRACT Changes in the structure of managed red pine forests in Wisconsin caused by interacting root- and stem-colonizing insects are associated with increased abundance of the blacklegged tick, Ixodes scapularis Say, in comparison with nonimpacted stands. However, the frequency and variability of the occurrence of tick-borne pathogens in this coniferous forest type across Wisconsin is unknown. Red pine forests were surveyed from 2009 to 2013 to determine the prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in questing I. scapularis nymphs. Polymerase chain reaction analysis revealed geographical differences in the nymphal infection prevalence (NIP) of these pathogens in red pine forests. In the Kettle Moraine State Forest (KMSF) in southeastern Wisconsin, NIP of B. burgdorferi across all years was 35% (range of 14.5–53.0%). At the Black River State Forest (BRSF) in western Wisconsin, NIP of B. burgdorferi across all years was 26% (range of 10.9–35.5%). Differences in NIP of B. burgdorferi between KMSF and BRSF were statistically significant for 2010 and 2011 and for all years combined (P < 0.05). NIP of A. phagocytophilum (human agent) averaged 9% (range of 4.6–15.8%) at KMSF and 3% (range of 0–6.4%) at BRSF, and was significantly different between the sites for all years combined (P < 0.05). Differences in coinfection of B. burgdorferi and A. phagocytophilum were not statistically significant between KMSF and BRSF, with an average of 3.4% (range of 1.7–10.5%) and 2.5% (range of 0–5.5%), respectively. In 2013, the density of infected nymphs in KMSF and BRSF was 14 and 30 per 1000m2, respectively, among the highest ever recorded for the state. Differences in the density of nymphs and NIP among sites were neither correlated with environmental factors nor time since tick colonization. These results document significant unexplained variation in tick-borne pathogens between coniferous forests in Wisconsin that warrants further study.
The ISME Journal | 2018
Benjamin D. Ross; Beth Hayes; Matthew Radey; Xia Lee; Tanya Josek; Jenna Bjork; David F. Neitzel; Susan M. Paskewitz; Seemay Chou; Joseph D. Mougous
Hard ticks of the order Ixodidae serve as vectors for numerous human pathogens, including the causative agent of Lyme Disease Borrelia burgdorferi. Tick-associated microbes can influence pathogen colonization, offering the potential to inhibit disease transmission through engineering of the tick microbiota. Here, we investigate whether B. burgdorferi encounters abundant bacteria within the midgut of wild adult Ixodes scapularis, its primary vector. Through the use of controlled sequencing methods and confocal microscopy, we find that the majority of field-collected adult I. scapularis harbor limited internal microbial communities that are dominated by endosymbionts. A minority of I. scapularis ticks harbor abundant midgut bacteria and lack B. burgdorferi. We find that the lack of a stable resident midgut microbiota is not restricted to I. scapularis since extension of our studies to I. pacificus, Amblyomma maculatum, and Dermacentor spp showed similar patterns. Finally, bioinformatic examination of the B. burgdorferi genome revealed the absence of genes encoding known interbacterial interaction pathways, a feature unique to the Borrelia genus within the phylum Spirochaetes. Our results suggest that reduced selective pressure from limited microbial populations within ticks may have facilitated the evolutionary loss of genes encoding interbacterial competition pathways from Borrelia.
Journal of Medical Entomology | 2016
Megan Christenson; Xia Lee; Scott R. Larson; Diep K. Hoang Johnson; Julia Jensen; Megan Meller; Susan M. Paskewitz
Abstract Because of the increasing incidence of human ehrlichiosis in Wisconsin, we assessed reports of human infections by Ehrlichia chaffeensis and the distribution of its vector, the lone star tick (Amblyomma americanum (L.)). From 2008 through 2015, 158 probable and confirmed human cases of E. chaffeensis infections were reported to the Wisconsin Department of Health Services. Five cases without travel history outside of Wisconsin were confirmed as E. chaffeensis by polymerase chain reaction. Surveillance for the vector occurred from 2008 through 2015 and was based on active and passive methods, including examination of white-tailed deer, collections from live-trapped small mammals, submissions of ticks removed from wild and domestic animals through the Wisconsin Surveillance of Animals for Ticks (SWAT) program, digital or physical submissions by the public to the University of Wisconsin Insect Diagnostic or Medical Entomology laboratories, and active tick dragging. More than 50 lone star ticks (46 adults, 6 nymphs, and 1 larva) were identified. Lone star ticks were more commonly found in south central Wisconsin, particularly in Dane County, where discovery of more than one life stage in a single year indicates possible establishment.
Journal of Medical Entomology | 2018
Scott R. Larson; Xia Lee; Susan M. Paskewitz
Abstract Two species of mice, the white-footed mouse, Peromyscus leucopus (Rafinesque; Rodentia: Cricetidae) and the woodland deer mouse, Peromyscus maniculatus (Wagner; Rodentia: Cricetidae), serve as reservoirs of tick-borne pathogens in many parts of North America. However, the role P. maniculatus plays in the amplification and maintenance of Anaplasma phagocytophilum (Rickettsiales: Ehrlichiaceae) and Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) is not well understood. In northern Wisconsin, from 2012 to 2014, 560 unique mice were captured at 83 sites distributed across five forests. P. leucopus was more likely infested with immature Ixodes scapularis compared to P. maniculatus (60.1 vs. 28.3%). Abundance of immature I. scapularis on P. leucopus (M = 2.69; SD = 3.53) was surprisingly low and even lower for P. maniculatus (M = 0.717; SD = 1.44). Both P. leucopus and P. maniculatus were infected with B. burgdorferi, 24.0 and 16.8%, respectively. The prevalence of A. phagocytophilum infection in P. leucopus (1.69%) was similar to that observed in P. maniculatus (4.73%). Nine of 10 mice co-infected with both pathogens were P. maniculatus, and there were more co-infections in this species than expected by chance (3.07 vs. 0.82%). Differences in the behavior and biology between these two mice species may contribute to the variation observed in the abundance of host-attached ticks and pathogen prevalence. These differences highlight a potential hazard of the failure to differentiate between these visually similar mice, but there is evidence that these two mice species can each serve as reservoirs for tick-borne pathogens that cause human disease in Wisconsin.
Forest Ecology and Management | 2013
David R. Coyle; Matthew Murphy; Susan M. Paskewitz; John L. Orrock; Xia Lee; Robert J. Murphy; Michael A. McGeehin; Kenneth F. Raffa
Archive | 2011
Bobbi S. Pritt; Jevon McFadden; Ellen Y. Stromdahl; David F. Neitzel; Diep K. Hoang-Johnson; Lynne M. Sloan; Gongping Liu; Ulrike G. Munderloh; Susan M. Paskewitz; Melissa M. Kemperman; Caroline A. Grady; David Boxrud; Kristina M. McElroy; Jennifer H. McQuiston; David M. Warshauer; Jeffrey P. Davis; Christopher R. Steward; William E. Irwin; Joni J. Franson; Matthew J. Binnicker; Robin Patel; Curtis M. Nelson; Tracy K. Miller; Michelle A. Feist; Xia Lee; S. Tongdean; J. Brezinka; M. Skoglund; Scott A. Martin; Kay Bogumill