Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xianlong Li is active.

Publication


Featured researches published by Xianlong Li.


Nature | 2014

The DNA methylation landscape of human early embryos

Hongshan Guo; Ping Zhu; Liying Yan; Rong Li; Boqiang Hu; Ying Lian; Jie Yan; Xiulian Ren; Shengli Lin; Junsheng Li; Xiaohu Jin; Xiaodan Shi; Ping Liu; Xiaoye Wang; Wei Wang; Yuan Wei; Xianlong Li; Fan Guo; Xinglong Wu; Xiaoying Fan; Jun Yong; Lu Wen; Sunney X. Xie; Fuchou Tang; Jie Qiao

DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.


Genome Research | 2013

Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing

Hongshan Guo; Ping Zhu; Xinglong Wu; Xianlong Li; Lu Wen; Fuchou Tang

DNA methylation is crucial for a wide variety of biological processes, yet no technique suitable for the methylome analysis of DNA methylation at single-cell resolution is available. Here, we describe a methylome analysis technique that enables single-cell and single-base resolution DNA methylation analysis based on reduced representation bisulfite sequencing (scRRBS). The technique is highly sensitive and can detect the methylation status of up to 1.5 million CpG sites within the genome of an individual mouse embryonic stem cell (mESC). Moreover, we show that the technique can detect the methylation status of individual CpG sites in a haploid sperm cell in a digitized manner as either unmethylated or fully methylated. Furthermore, we show that the demethylation dynamics of maternal and paternal genomes after fertilization can be traced within the individual pronuclei of mouse zygotes. The demethylation process of the genic regions is faster than that of the intergenic regions in both male and female pronuclei. Our method paves the way for the exploration of the dynamic methylome landscapes of individual cells at single-base resolution during physiological processes such as embryonic development, or during pathological processes such as tumorigenesis.


Cell Stem Cell | 2014

Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming

Xiao Hu; Lei Zhang; Shi-Qing Mao; Zheng Li; Jiekai Chen; Run-Rui Zhang; Hai-Ping Wu; Juan Gao; Fan Guo; Wei Liu; Gui-Fang Xu; Hai-Qiang Dai; Yujiang Geno Shi; Xianlong Li; Boqiang Hu; Fuchou Tang; Duanqing Pei; Guoliang Xu

Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.


Genome Biology | 2014

Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain

Lu Wen; Xianlong Li; Liying Yan; Yuexi Tan; Rong Li; Yangyu Zhao; Yan Wang; Jingcheng Xie; Yan Zhang; Chun-Xiao Song; Miao Yu; Xiaomeng Liu; Ping Zhu; Xiaoyu Li; Yu Hou; Hongshan Guo; Xinglong Wu; Chuan He; Ruiqiang Li; Fuchou Tang; Jie Qiao

Background5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.ResultsWe present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5′splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.ConclusionsWe provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.


Cell Research | 2016

Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

Yu Hou; Huahu Guo; Chen Cao; Xianlong Li; Boqiang Hu; Ping Zhu; Xinglong Wu; Lu Wen; Fuchou Tang; Yanyi Huang; Jirun Peng

Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells.


Nature | 2016

Tracing haematopoietic stem cell formation at single-cell resolution

Fan Zhou; Xianlong Li; Weili Wang; Ping Zhu; Jie Zhou; Wenyan He; Meng Ding; Fuyin Xiong; Xiaona Zheng; Zhuan Li; Yanli Ni; Xiaohuan Mu; Lu Wen; Tao Cheng; Yu Lan; Weiping Yuan; Fuchou Tang; Bing Liu

Haematopoietic stem cells (HSCs) are derived early from embryonic precursors, such as haemogenic endothelial cells and pre-haematopoietic stem cells (pre-HSCs), the molecular identity of which still remains elusive. Here we use potent surface markers to capture the nascent pre-HSCs at high purity, as rigorously validated by single-cell-initiated serial transplantation. Then we apply single-cell RNA sequencing to analyse endothelial cells, CD45− and CD45+ pre-HSCs in the aorta–gonad–mesonephros region, and HSCs in fetal liver. Pre-HSCs show unique features in transcriptional machinery, arterial signature, metabolism state, signalling pathway, and transcription factor network. Functionally, activation of mechanistic targets of rapamycin (mTOR) is shown to be indispensable for the emergence of HSCs but not haematopoietic progenitors. Transcriptome data-based functional analysis reveals remarkable heterogeneity in cell-cycle status of pre-HSCs. Finally, the core molecular signature of pre-HSCs is identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating stepwise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical applications.


Nature Protocols | 2015

Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing

Hongshan Guo; Ping Zhu; Fan Guo; Xianlong Li; Xinglong Wu; Xiaoying Fan; Lu Wen; Fuchou Tang

The heterogeneity of DNA methylation within a population of cells necessitates DNA methylome profiling at single-cell resolution. Recently, we developed a single-cell reduced-representation bisulfite sequencing (scRRBS) technique in which we modified the original RRBS method by integrating all the experimental steps before PCR amplification into a single-tube reaction. These modifications enable scRRBS to provide digitized methylation information on ∼1 million CpG sites within an individual diploid mouse or human cell at single-base resolution. Compared with the single-cell bisulfite sequencing (scBS) technique, scRRBS covers fewer CpG sites, but it provides better coverage for CpG islands (CGIs), which are likely to be the most informative elements for DNA methylation. The entire procedure takes ∼3 weeks, and it requires strong molecular biology skills.


Cell Research | 2017

Clonal analysis reveals remarkable functional heterogeneity during hematopoietic stem cell emergence

Hui Ye; Xiaobo Wang; Zongcheng Li; Fan Zhou; Xianlong Li; Yanli Ni; Weijing Zhang; Fuchou Tang; Bing Liu; Yu Lan

Clonal analysis reveals remarkable functional heterogeneity during hematopoietic stem cell emergence


Cell Stem Cell | 2014

Active and Passive Demethylation of Male and Female Pronuclear DNA in the Mammalian Zygote

Fan Guo; Xianlong Li; Dan Liang; Tong Li; Ping Zhu; Hongshan Guo; Xinglong Wu; Lu Wen; Tian-Peng Gu; Boqiang Hu; Colum P. Walsh; Jinsong Li; Fuchou Tang; Guoliang Xu


Osteoarthritis and Cartilage | 2018

Pain-related direct medical expenditures among elderly Chinese

Xianlong Li; Qinghua Liu; Zongke Zhou; Z. Li; J. Lin

Collaboration


Dive into the Xianlong Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Guo

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Bing Liu

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Fan Zhou

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge