Xiaoning Si
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoning Si.
Journal of Virology | 2008
Jingchun Zhang; Xiaoning Si; Guang Gao; Ivy Mao; Bruce M. McManus; Honglin Luo
ABSTRACT Recent studies suggest a possible takeover of host antimicrobial autophagy machinery by positive-stranded RNA viruses to facilitate their own replication. In the present study, we investigated the role of autophagy in coxsackievirus replication. Coxsackievirus B3 (CVB3), a picornavirus associated with viral myocarditis, causes pronounced intracellular membrane reorganization after infection. We demonstrate that CVB3 infection induces an increased number of double-membrane vesicles, accompanied by an increase of the LC3-II/LC3-I ratio and an accumulation of punctate GFP-LC3-expressing cells, two hallmarks of cellular autophagosome formation. However, protein expression analysis of p62, a marker for autophagy-mediated protein degradation, showed no apparent changes after CVB3 infection. These results suggest that CVB3 infection triggers autophagosome formation without promoting protein degradation by the lysosome. We further examined the role of the autophagosome in CVB3 replication. We demonstrated that inhibition of autophagosome formation by 3-methyladenine or small interfering RNAs targeting the genes critical for autophagosome formation (ATG7, Beclin-1, and VPS34 genes) significantly reduced viral replication. Conversely, induction of autophagy by rapamycin or nutrient deprivation resulted in increased viral replication. Finally, we examined the role of autophagosome-lysosome fusion in viral replication. We showed that blockage of the fusion by gene silencing of the lysosomal protein LAMP2 significantly promoted viral replication. Taken together, our results suggest that the hosts autophagy machinery is activated during CVB3 infection to enhance the efficiency of viral replication.
Journal of Virology | 2005
Xiaoning Si; Bruce M. McManus; Jingchun Zhang; Ji Yuan; Caroline Cheung; Mitra Esfandiarei; Agripina Suarez; Andrew Morgan; Honglin Luo
ABSTRACT Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-l-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.
Journal of Virology | 2007
Xiaoning Si; Yahong Wang; Jingchun Zhang; Bruce M. McManus; Honglin Luo
ABSTRACT Curcumin (diferuloylmethane), a natural polyphenolic compound extracted from the spice turmeric, has been reported to have anti-inflammatory, antioxidant, and antiproliferative properties by modulating multiple cellular machineries. It inhibits several intracellular signaling pathways, including the mitogen-activated protein kinases (MAPKs), casein kinase II (CKII), and the COP9 signalosome (CSN), in various cell types. It has also been recently demonstrated that exposure to curcumin leads to the dysregulation of the ubiquitin-proteasome system (UPS). Coxsackievirus infection is associated with various diseases, including myocarditis and dilated cardiomyopathy. In searching for new antiviral agents against coxsackievirus, we found that treatment with curcumin significantly reduced viral RNA expression, protein synthesis, and virus titer and protected cells from virus-induced cytopathic effect and apoptosis. We further demonstrated that reduction of viral infection by curcumin was unlikely due to inhibition of CVB3 binding to its receptors or CVB3-induced activation of MAPKs. Moreover, gene silencing of CKII and Jab1, a component of CSN, by small interfering RNAs did not inhibit the replication of coxsackievirus, suggesting that the antiviral action of curcumin is independent of these pathways. Finally, we showed that curcumin treatment reduced both the 20S proteasome proteolytic activities and the cellular deubiquitinating activities, leading to increased accumulation of ubiquitinated proteins and decreased protein levels of free ubiquitin. We have recently demonstrated that the UPS-mediated protein degradation and/or modification plays a critical role in the regulation of coxsackievirus replication. Thus, our results suggest an important antiviral effect of curcumin wherein it potently inhibits coxsackievirus replication through dysregulation of the UPS.
Journal of Virology | 2010
David Marchant; Gurpreet K. Singhera; Soraya Utokaparch; Tillie L. Hackett; John H. Boyd; Zongshu Luo; Xiaoning Si; Delbert R. Dorscheid; Bruce M. McManus; Richard G. Hegele
ABSTRACT Respiratory viruses exert a heavy toll of morbidity and mortality worldwide. Despite this burden there are few specific treatments available for respiratory virus infections. Since many viruses utilize host cell enzymatic machinery such as protein kinases for replication, we determined whether pharmacological inhibition of kinases could, in principle, be used as a broad antiviral strategy for common human respiratory virus infections. A panel of green fluorescent protein (GFP)-expressing recombinant respiratory viruses, including an isolate of H1N1 influenza virus (H1N1/Weiss/43), was used to represent a broad range of virus families responsible for common respiratory infections (Adenoviridae, Paramyxoviridae, Picornaviridae, and Orthomyxoviridae). Kinase inhibitors were screened in a high-throughput assay that detected virus infection in human airway epithelial cells (1HAEo-) using a fluorescent plate reader. Inhibition of p38 mitogen-activated protein kinase (MAPK) signaling was able to significantly inhibit replication by all viruses tested. Therefore, the pathways involved in virus-mediated p38 and extracellular signal-regulated kinase (ERK) MAPK activation were investigated using bronchial epithelial cells and primary fibroblasts derived from MyD88 knockout mouse lungs. Influenza virus, which activated p38 MAPK to approximately 10-fold-greater levels than did respiratory syncytial virus (RSV) in 1HAEo- cells, was internalized about 8-fold faster and more completely than RSV. We show for the first time that p38 MAPK is a determinant of virus infection that is dependent upon MyD88 expression and Toll-like receptor 4 (TLR4) ligation. Imaging of virus-TLR4 interactions showed significant clustering of TLR4 at the site of virus-cell interaction, triggering phosphorylation of downstream targets of p38 MAPK, suggesting the need for a signaling receptor to activate virus internalization.
PLOS ONE | 2008
Xiaoning Si; Guang Gao; Yahong Wang; Jingchun Zhang; Honglin Luo
Background Protein ubiquitination and/or degradation by the ubiquitin/proteasome system (UPS) have been recognized as critical mechanisms in the regulation of numerous essential cellular functions. The importance of the UPS in viral pathogenesis has become increasingly apparent. Using murine cardiomyocytes, we have previously demonstrated that the UPS plays a key role in the replication of coxsackievirus B3 (CVB3), an important human pathogen associated with various diseases. To further elucidate the underlying mechanisms, we examined the interplay between the UPS and CVB3, focusing on the role of ubiquitination in viral lifecycle. Methodology/Principal Findings As assessed by in situ hybridization, Western blot, and plaque assay, we showed that proteasome inhibition decreased CVB3 RNA replication, protein synthesis, and viral titers in HeLa cells. There were no apparent changes in 20S proteasome activities following CVB3 infection. However, we found viral infection led to an accumulation of protein-ubiquitin conjugates, accompanied by a decreased protein expression of free ubiquitin, implicating an important role of ubiquitination in the UPS-mediated viral replication. Using small-interfering RNA, we demonstrated that gene-silencing of ubiquitin significantly reduced viral titers, possibly through downregulation of protein ubiquitination and subsequent alteration of protein function and/or degradation. Inhibition of deubiquitinating enzymes apparently enhances the inhibitory effects of proteasome inhibitors on CVB3 replication. Finally, by immunoprecipitation, we showed that coxsackieviral polymerase 3D was post-translationally modified by ubiquitination and such modification might be a prerequisite for its function in transcriptional regulation of viral genome. Conclusion Coxsackievirus infection promotes protein ubiquitination, contributing to effective viral replication, probably through ubiquitin modification of viral polymerase.
Cell Death & Differentiation | 2005
Ji Yuan; Jingchun Zhang; Brian W. Wong; Xiaoning Si; Decheng Yang; Honglin Luo
Coxsackievirus B3 (CVB3), a common human pathogen for viral myocarditis, induces a direct cytopathic effect (CPE) and apoptosis on infected cells. To elucidate the mechanisms that contribute to these processes, we studied the role of glycogen synthase kinase 3β (GSK3β). GSK3β activity was significantly increased after CVB3 infection and addition of tyrosine kinase inhibitors blocked CVB3-triggered GSK3β activation. Inhibition of caspase activity had no inhibitory effect on CVB3-induced CPE; however, blockage of GSK3β activation attenuated both CVB3-induced CPE and apoptosis. We further showed that CVB3 infection resulted in reduced β-catenin protein expression, and GSK3β inhibition led to the accumulation and nuclear translocation of β-catenin. Finally, we found that CVB3-induced CPE and apoptosis were significantly reduced in cells stably overexpressing β-catenin. Taken together, our results demonstrate that CVB3 infection stimulates GSK3β activity via a tyrosine kinase-dependent mechanism, which contributes to CVB3-induced CPE and apoptosis through dysregulation of β-catenin.
Circulation Research | 2006
Mitra Esfandiarei; Agripina Suarez; Ansel Amaral; Xiaoning Si; Maziar Rahmani; Shoukat Dedhar; Bruce M. McManus
Viral myocarditis is a major cause of sudden cardiac death in children and young adults. Among viruses, coxsackievirus B3 (CVB3) is the most common agent for myocarditis. Recently, more consideration has been given to the role of signaling pathways in pathogenesis of enteroviral myocarditis, providing new platform for identifying a new potential therapeutic target for this, so far, incurable disease. Previously, we reported on the role of the protein kinase-B/Akt in CVB3 replication and virus-induced cell injury. Here, we report on regulation of virus-induced Akt activation by the integrin-linked kinase in infected mouse cardiomyocytes and HeLa cells. This study also presents the first observation that inhibition of ILK in CVB3-infected cells significantly improves the viability of infected cells, while blocking viral replication and virus release. Complementary experiments using a constitutively active form of Akt1 revealed that the observed protective effect of ILK inhibition is dependent on the associated downregulation of virus-induced Akt activation. To our knowledge, this is the first report of such beneficial effects of ILK inhibition in a viral infection model and conveys new insights in our efforts to characterize a novel therapeutic target for treatment of enteroviral myocarditis.
Cellular Microbiology | 2007
Mitra Esfandiarei; Seti Boroomand; Agripina Suarez; Xiaoning Si; Maziar Rahmani; Bruce M. McManus
Coxsackievirus B3 (CVB3) is the most common viral infectant of heart muscle. CVB3 directly injures cardiomyocytes. We have previously reported on a regulatory role for the phosphatidylinositol‐3 kinase (PI3K)/protein kinase B (Akt) pathway during CVB3 infection. Yet, the mechanism underlying this regulatory role has not been elucidated. The PI3K/Akt pathway is involved in various cellular processes and exerts its function through the activation of several downstream effectors. Among them, nuclear factor kappa B (NFκB) transcription factor is involved in inflammation, survival and apoptosis. In this study, we investigated the role of NFκB as a potential downstream mediator of signals through the PI3K/Akt cascade, in regulating CVB3‐induced cellular injury. We report that CVB3 infection induces the translocation of NFκB into the nucleus of infected cells. Inhibition of the PI3K/Akt pathway markedly decreases virus‐induced NFκB activation. Further, NFκB inhibition significantly suppresses host viability, suggesting a pro‐survival role for NFκB. Short‐term treatment of cells with tumour necrosis factor‐α (TNF‐α), a potent activator of NFκB, promotes host cell viability without affecting virus replication. However, a prolonged treatment has a detrimental effect on cells, indicating the existence of a delicate balance between the anti‐ and pro‐apoptotic roles of TNF‐α in the setting of CVB3 infection.
Journal of General Virology | 2009
David Marchant; Alhousseynou Sall; Xiaoning Si; Thomas Abraham; Winnie Wu; Zongshu Luo; Tamar Petersen; Richard G. Hegele; Bruce M. McManus
Clathrin- and caveolae-mediated endocytosis have been implicated in the productive entry of many viruses into host cells. ADP-ribosylation factor 6 (Arf6)-dependent endocytosis is another endocytosis pathway that traffics from the cell surface and it is the only Arf that traffics at the plasma membrane. However, little is known about Arf6-dependent trafficking during virus entry. This study showed that coxsackievirus type B3 (CVB3) associated with decay-accelerating factor in non-polarized HeLa cells can be redirected into non-productive compartments by Arf6-dependent internalization, thus restricting infection. Overexpression of wild-type (WT) and constitutively active (CA) Arf6 in HeLa cells resulted in a 2.3- and 3.6-fold decrease in infection, respectively. A dominant-negative inhibitor of Arf6 recovered restriction of infection by WT-Arf6 and CA-Arf6. RNA interference of endogenous Arf6 resulted in a 3.3-fold increase in CVB3 titre in HeLa cells. It was shown that coxsackie-adenovirus receptor (CAR) ligation by virus or CAR-specific antibody could activate extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase family and lead to Arf6-mediated viral restriction. In the absence of ERK activation, CVB3 internalization into early endosomes was inhibited and subsequent infection was reduced, but Arf6-mediated restriction was also abolished. In conclusion, receptor-mediated signalling enhances CVB3 entry whilst also activating non-productive pathways of virus entry; thus, virus infection is an equilibrium of productive and non-productive pathways of entry.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Guang Gao; Jingchun Zhang; Xiaoning Si; Caroline Cheung; Bruce M. McManus; Honglin Luo
Coxsackievirus B3 (CVB3) is one of the most prevalent pathogens of viral myocarditis, which may persist chronically and progress to dilated cardiomyopathy. We previously demonstrated a critical role of the ubiquitin-proteasome system (UPS) in the regulation of coxsackievirus replication in mouse cardiomyocytes. In the present study, we extend our interest to an in vivo animal model to examine the regulation and role of the UPS in CVB3-induced murine myocarditis. Male myocarditis-susceptible A/J mice at age 4-5 wk were randomized to four groups: sham infection + vehicle (n = 10), sham infection + proteasome inhibitor (n = 10), virus + vehicle (n = 20), and virus + proteasome inhibitor (n = 20). Proteasome inhibitor was administered subcutaneously once a day for 3 days. Mice were killed on day 9 after infection, and infected hearts were harvested for Western blot analysis, plaque assay, immunostaining, and histological examination. We showed that CVB3 infection led to an accumulation of ubiquitin conjugates at 9 days after infection. Protein levels of ubiquitin-activating enzyme E1A/E1B, ubiquitin-conjugating enzyme UBCH7, as well as deubiquitinating enzyme UCHL1 were markedly increased in CVB3-infected mice compared with sham infection. However, there was no significant alteration in proteasome activities at 9 days after infection. Immunohistochemical staining revealed that increased expression of E1A/E1B was mainly localized to virus-damaged cells. Finally, we showed that application of a proteasome inhibitor significantly reduced CVB3-induced myocardial damage. This observation reveals a novel mechanism of coxsackieviral pathogenesis, and suggests that the UPS may be an attractive therapeutic target against coxsackievirus-induced myocarditis.