Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaotao Qu is active.

Publication


Featured researches published by Xiaotao Qu.


Scientific Reports | 2012

12-Chemokine Gene Signature Identifies Lymph Node-like Structures in Melanoma: Potential for Patient Selection for Immunotherapy?

Jane L. Messina; David Fenstermacher; Steven Eschrich; Xiaotao Qu; Anders Berglund; Mark C. Lloyd; Michael J. Schell; Vernon K. Sondak; Jeffrey S. Weber; James J. Mulé

We have interrogated a 12-chemokine gene expression signature (GES) on genomic arrays of 14,492 distinct solid tumors and show broad distribution across different histologies. We hypothesized that this 12-chemokine GES might accurately predict a unique intratumoral immune reaction in stage IV (non-locoregional) melanoma metastases. The 12-chemokine GES predicted the presence of unique, lymph node-like structures, containing CD20+ B cell follicles with prominent areas of CD3+ T cells (both CD4+ and CD8+ subsets). CD86+, but not FoxP3+, cells were present within these unique structures as well. The direct correlation between the 12-chemokine GES score and the presence of unique, lymph nodal structures was also associated with better overall survival of the subset of melanoma patients. The use of this novel 12-chemokine GES may reveal basic information on in situ mechanisms of the anti-tumor immune response, potentially leading to improvements in the identification and selection of melanoma patients most suitable for immunotherapy.


Cancer Research | 2012

The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism

Prakash Chinnaiyan; Elizabeth Kensicki; Gregory C. Bloom; Antony Prabhu; Bhaswati Sarcar; Soumen Kahali; Steven Eschrich; Xiaotao Qu; Peter A. Forsyth; Robert J. Gillies

Although considerable progress has been made toward understanding glioblastoma biology through large-scale genetic and protein expression analyses, little is known about the underlying metabolic alterations promoting their aggressive phenotype. We conducted global metabolomic profiling on patient-derived glioma specimens and identified specific metabolic programs differentiating low- and high-grade tumors, with the metabolic signature of glioblastoma reflecting accelerated anabolic metabolism. When coupled with transcriptional profiles, we identified the metabolic phenotype of the mesenchymal subtype to consist of accumulation of the glycolytic intermediate phosphoenolpyruvate and decreased pyruvate kinase activity. Unbiased hierarchical clustering of metabolomic profiles identified three subclasses, which we term energetic, anabolic, and phospholipid catabolism with prognostic relevance. These studies represent the first global metabolomic profiling of glioma, offering a previously undescribed window into their metabolic heterogeneity, and provide the requisite framework for strategies designed to target metabolism in this rapidly fatal malignancy.


Cancer Research | 2011

LIN28B Polymorphisms Influence Susceptibility to Epithelial Ovarian Cancer

Jennifer Permuth-Wey; Donghwa Kim; Ya Yu Tsai; Hui-Yi Lin; Y. Ann Chen; Jill S. Barnholtz-Sloan; Michael J. Birrer; Gregory C. Bloom; Stephen J. Chanock; Zhihua Chen; Daniel W. Cramer; Julie M. Cunningham; Getachew A. Dagne; Judith Ebbert-Syfrett; David Fenstermacher; Brooke L. Fridley; Montserrat Garcia-Closas; Simon A. Gayther; William Ge; Aleksandra Gentry-Maharaj; Jesus Gonzalez-Bosquet; Ellen L. Goode; Edwin S. Iversen; Heather Jim; William Kong; John R. McLaughlin; Usha Menon; Alvaro N.A. Monteiro; Steven A. Narod; Paul Pharoah

Defective microRNA (miRNA) biogenesis contributes to the development and progression of epithelial ovarian cancer (EOC). In this study, we examined the hypothesis that single nucleotide polymorphisms (SNP) in miRNA biogenesis genes may influence EOC risk. In an initial investigation, 318 SNPs in 18 genes were evaluated among 1,815 EOC cases and 1,900 controls, followed up by a replicative joint meta-analysis of data from an additional 2,172 cases and 3,052 controls. Of 23 SNPs from 9 genes associated with risk (empirical P < 0.05) in the initial investigation, the meta-analysis replicated 6 SNPs from the DROSHA, FMR1, LIN28, and LIN28B genes, including rs12194974 (G>A), an SNP in a putative transcription factor binding site in the LIN28B promoter region (summary OR = 0.90, 95% CI: 0.82-0.98; P = 0.015) which has been recently implicated in age of menarche and other phenotypes. Consistent with reports that LIN28B overexpression in EOC contributes to tumorigenesis by repressing tumor suppressor let-7 expression, we provide data from luciferase reporter assays and quantitative RT-PCR to suggest that the inverse association among rs12194974 A allele carriers may be because of reduced LIN28B expression. Our findings suggest that variants in LIN28B and possibly other miRNA biogenesis genes may influence EOC susceptibility.


Journal of Biological Chemistry | 2015

Neurotrophin Signaling via TrkB and TrkC Receptors Promotes the Growth of Brain Tumor-initiating Cells

Samuel O. Lawn; Niveditha Krishna; Alexandra Pisklakova; Xiaotao Qu; David A. Fenstermacher; Michelle Fournier; Frank D. Vrionis; Nam D. Tran; Jennifer A. Chan; Rajappa Kenchappa; Peter A. Forsyth

Background: The role of Trk neurotrophin receptors in glioma is unknown. Results: TrkB and TrkC are required for survival of brain tumor-initiating cells in the absence of EGF and FGF. Conclusion: Trk receptors can control the survival of BTICs in the absence of EGF and FGF. Significance: Trks may be important targets for treatment of malignant gliomas. Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma.


Journal of Biological Chemistry | 2014

p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells

Peter A. Forsyth; Niveditha Krishna; Samuel O. Lawn; J. Gerardo Valadez; Xiaotao Qu; David A. Fenstermacher; Michelle Fournier; Lisa Potthast; Prakash Chinnaiyan; Geoffrey T. Gibney; Michele Zeinieh; Philip A. Barker; Bruce D. Carter; Michael K. Cooper; Rajappa Kenchappa

Background: p75 neurotrophin receptor (p75NTR) is an important mediator of invasion of malignant gliomas, but its role in glioma proliferation is unknown. Results: p75NTR mediates proliferation of brain tumor-initiating cells (BTICs) via its cleavage and release of an intracellular domain. Conclusion: p75NTR also regulates proliferation of BTICs. Significance: p75NTR is a potential target for the treatment of malignant gliomas. Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.


PLOS ONE | 2016

ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer.

Takeshi Yoshida; Lanxi Song; Yun Bai; Fumi Kinose; Jiannong Li; Kim Ohaegbulam; Teresita Muñoz-Antonia; Xiaotao Qu; Steven Eschrich; Hidetaka Uramoto; Fumihiro Tanaka; Patrick Nasarre; Robert M. Gemmill; Joëlle Roche; Harry A. Drabkin; Eric B. Haura

Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.


Cancer Epidemiology, Biomarkers & Prevention | 2011

Inherited Variants in Mitochondrial Biogenesis Genes May Influence Epithelial Ovarian Cancer Risk

Jennifer Permuth-Wey; Y. Ann Chen; Ya Yu Tsai; Zhihua Chen; Xiaotao Qu; Johnathan M. Lancaster; Heather G. Stockwell; Getachew A. Dagne; Edwin S. Iversen; Harvey A. Risch; Jill S. Barnholtz-Sloan; Julie M. Cunningham; Robert A. Vierkant; Brooke L. Fridley; Rebecca Sutphen; John R. McLaughlin; Steven A. Narod; Ellen L. Goode; Joellen M. Schildkraut; David Fenstermacher; Catherine M. Phelan; Thomas A. Sellers

Background: Mitochondria contribute to oxidative stress, a phenomenon implicated in ovarian carcinogenesis. We hypothesized that inherited variants in mitochondrial-related genes influence epithelial ovarian cancer (EOC) susceptibility. Methods: Through a multicenter study of 1,815 Caucasian EOC cases and 1,900 controls, we investigated associations between EOC risk and 128 single nucleotide polymorphisms (SNPs) from 22 genes/regions within the mitochondrial genome (mtDNA) and 2,839 nuclear-encoded SNPs localized to 138 genes involved in mitochondrial biogenesis (BIO, n = 35), steroid hormone metabolism (HOR, n = 13), and oxidative phosphorylation (OXP, n = 90) pathways. Unconditional logistic regression was used to estimate OR and 95% CI between genotype and case status. Overall significance of each gene and pathway was evaluated by using Fishers method to combine SNP-level evidence. At the SNP level, we investigated whether lifetime ovulation, hormone replacement therapy (HRT), and cigarette smoking were confounders or modifiers of associations. Results: Interindividual variation involving BIO was most strongly associated with EOC risk (empirical P = 0.050), especially for NRF1, MTERF, PPARGC1A, ESRRA, and CAMK2D. Several SNP-level associations strengthened after adjustment for nongenetic factors, particularly for MTERF. Statistical interactions with cigarette smoking and HRT use were observed with MTERF and CAMK2D SNPs, respectively. Overall variation within mtDNA, HOR, and OXP was not statistically significant (empirical P > 0.10). Conclusion: We provide novel evidence to suggest that variants in mitochondrial biogenesis genes may influence EOC susceptibility. Impact: A deeper understanding of the complex mechanisms implicated in mitochondrial biogenesis and oxidative stress may aid in developing strategies to reduce morbidity and mortality from EOC. Cancer Epidemiol Biomarkers Prev; 20(6); 1131–45. ©2011 AACR.


PLOS ONE | 2015

A Genome-Wide Investigation of MicroRNA Expression Identifies Biologically-Meaningful MicroRNAs That Distinguish between High-Risk and Low-Risk Intraductal Papillary Mucinous Neoplasms of the Pancreas

Jennifer Permuth-Wey; Y. Ann Chen; Kate Fisher; Susan McCarthy; Xiaotao Qu; Mark C. Lloyd; Agnieszka Kasprzak; Michelle Fournier; Vonetta L. Williams; Kavita M. Ghia; Sean J. Yoder; Laura S. Hall; Christina Georgeades; Funmilayo Olaoye; Kazim Husain; Gregory M. Springett; Dung-Tsa Chen; Timothy J. Yeatman; Barbara A. Centeno; Jason B. Klapman; Domenico Coppola; Mokenge P. Malafa

Background Intraductal papillary mucinous neoplasms (IPMNs) are pancreatic ductal adenocarcinoma (PDAC) precursors. Differentiating between high-risk IPMNs that warrant surgical resection and low-risk IPMNs that can be monitored is a significant clinical problem, and we sought to discover a panel of mi(cro)RNAs that accurately classify IPMN risk status. Methodology/Principal Findings In a discovery phase, genome-wide miRNA expression profiling was performed on 28 surgically-resected, pathologically-confirmed IPMNs (19 high-risk, 9 low-risk) using Taqman MicroRNA Arrays. A validation phase was performed in 21 independent IPMNs (13 high-risk, 8 low-risk). We also explored associations between miRNA expression level and various clinical and pathological factors and examined genes and pathways regulated by the identified miRNAs by integrating data from bioinformatic analyses and microarray analysis of miRNA gene targets. Six miRNAs (miR-100, miR-99b, miR-99a, miR-342-3p, miR-126, miR-130a) were down-regulated in high-risk versus low-risk IPMNs and distinguished between groups (P<10−3, area underneath the curve (AUC) = 87%). The same trend was observed in the validation phase (AUC = 74%). Low miR-99b expression was associated with main pancreatic duct involvement (P = 0.021), and serum albumin levels were positively correlated with miR-99a (r = 0.52, P = 0.004) and miR-100 expression (r = 0.49, P = 0.008). Literature, validated miRNA:target gene interactions, and pathway enrichment analysis supported the candidate miRNAs as tumor suppressors and regulators of PDAC development. Microarray analysis revealed that oncogenic targets of miR-130a (ATG2B, MEOX2), miR-342-3p (DNMT1), and miR-126 (IRS-1) were up-regulated in high- versus low-risk IPMNs (P<0.10). Conclusions This pilot study highlights miRNAs that may aid in preoperative risk stratification of IPMNs and provides novel insights into miRNA-mediated progression to pancreatic malignancy. The miRNAs identified here and in other recent investigations warrant evaluation in biofluids in a well-powered prospective cohort of individuals newly-diagnosed with IPMNs and other pancreatic cysts and those at increased genetic risk for these lesions.


Annals of Human Genetics | 2012

TRM: a powerful two-stage machine learning approach for identifying SNP-SNP interactions.

Hui-Yi Lin; Y. Ann Chen; Ya-Yu Tsai; Xiaotao Qu; Tung-Sung Tseng; Jong Y. Park

Studies have shown that interactions of single nucleotide polymorphisms (SNPs) may play an important role in understanding the causes of complex disease. We have proposed an integrated machine learning method that combines two machine‐learning methods—Random Forests (RF) and Multivariate Adaptive Regression Splines (MARS)—to identify a subset of important SNPs and detect interaction patterns more effectively and efficiently. In this two‐stage RF‐MARS (TRM) approach, RF is first applied to detect a predictive subset of SNPs, and then MARS is used to identify the interaction patterns. We evaluated the TRM performances in four models. RF variable selection was based on out‐of‐bag classification error rate (OOB) and variable important spectrum (IS). Our results support that RFOOB had better performance than MARS and RFIS in detecting important variables. This study demonstrates that TRMOOB, which is RFOOB plus MARS, has combined the strengths of RF and MARS in identifying SNP‐SNP interactions in a scenario of 100 candidate SNPs. TRMOOB had greater true positive rate and lower false positive rate compared with MARS, particularly for searching interactions with a strong association with the outcome. Therefore, the use of TRMOOB is favored for exploring SNP‐SNP interactions in a large‐scale genetic variation study.


PLOS ONE | 2012

DNA Methylation Profiling across the Spectrum of HPV-Associated Anal Squamous Neoplasia

Jonathan M. Hernandez; Erin M. Siegel; Bridget Riggs; Steven Eschrich; Abul Elahi; Xiaotao Qu; Abidemi Ajidahun; Anders Berglund; Domenico Coppola; William M. Grady; Anna R. Giuliano; David Shibata

Background Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia. Methodology/Principal Findings Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15). Thirteen women and 11 men with a median age of 44 years (range 26–81) were included in the study. Using the SFP10 LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01). The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation “hotspots” and viral integration sites. Conclusions We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.

Collaboration


Dive into the Xiaotao Qu's collaboration.

Top Co-Authors

Avatar

Ya-Yu Tsai

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Sellers

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Hui-Yi Lin

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhihua Chen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Simon A. Gayther

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Y. Ann Chen

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge