Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinjin Chi is active.

Publication


Featured researches published by Xinjin Chi.


Oxidative Medicine and Cellular Longevity | 2014

Propofol activation of the Nrf2 pathway is associated with amelioration of acute lung injury in a rat liver transplantation model

Weifeng Yao; Gangjian Luo; Guosong Zhu; Xinjin Chi; Ailan Zhang; Zhengyuan Xia; Ziqing Hei

Objective. This study aimed to investigate whether propofol pretreatment can protect against liver transplantation-induced acute lung injury (ALI) and to explore whether Nrf2 pathway is involved in the protections provided by propofol pretreatment. Method. Adult male Sprague-Dawley rats were divided into five groups based on the random number table. Lung pathology was observed by optical microscopy. Lung water content was assessed by wet/dry ratio, and PaO2 was detected by blood gas analysis. The contents of H2O2, MDA, and SOD activity were determined by ELISA method, and the expression of HO-1, NQO1, Keap1, and nuclear Nrf2 was assayed by western blotting. Results. Compared with saline-treated model group, both propofol and N-acetylcysteine pretreatment can reduce the acute lung injury caused by orthotopic autologous liver transplantation (OALT), decrease the lung injury scores, lung water content, and H2O2 and MDA levels, and improve the arterial PaO2 and SOD activity. Furthermore, propofol (but not N-acetylcysteine) pretreatment especially in high dose inhibited the expression of Keap1 and induced translocation of Nrf2 into the nucleus to further upregulate the expression of HO-1 and NQO1 downstream. Conclusion. Pretreatment with propofol is associated with attenuation of OALT-induced ALI, and the Nrf2 pathway is involved in the antioxidative processes.


Anesthesiology | 2015

Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32.

Chenfang Luo; Dongdong Yuan; Xiaoyun Li; Weifeng Yao; Gangjian Luo; Xinjin Chi; Haobo Li; Michael G. Irwin; Zhengyuan Xia; Ziqing Hei

Background:Postliver transplantation acute kidney injury (AKI) severely affects patient survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion induced enhancement of connexin32 (Cx32) gap junction plays a critical role in mediating postliver transplantation AKI and that pretreatment/precondition with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. Methods:Male Sprague–Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx32 inhibitor, 2-aminoethoxydiphenyl borate or propofol (50 mg/kg) (n = 8 per group). Also, kidney tubular epithelial (NRK-52E) cells were subjected to hypoxia–reoxygenation and the function of Cx32 was manipulated by three distinct mechanisms: cell culture in different density; pretreatment with Cx32 inhibitors or enhancer; Cx32 gene knock-down (n = 4 to 5). Results:AOLT resulted in significant increases of renal Cx32 protein expression and gap junction, which were coincident with increases in oxidative stress and impairment in renal function and tissue injury as compared to sham group. Similarly, hypoxia–reoxygenation resulted in significant cellular injury manifested as reduced cell growth and increased lactate dehydrogenase release, which was significantly attenuated by Cx32 gene knock-down but exacerbated by Cx32 enhancement. Propofol inhibited Cx32 function and attenuated post-AOLT AKI. In NRK-52E cells, propofol reduced posthypoxic reactive oxygen species production and attenuated cellular injury, and the cellular protective effects of propofol were reinforced by Cx32 inhibition but cancelled by Cx32 enhancement. Conclusion:Cx32 plays a critical role in AOLT-induced AKI and that inhibition of Cx32 function may represent a new and major mechanism whereby propofol reduces oxidative stress and subsequently attenuates post-AOLT AKI.


PLOS ONE | 2013

Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

Ailan Zhang; Xinjin Chi; Gangjian Luo; Ziqing Hei; Hua Xia; Chenfang Luo; Yanling Wang; Xiaowen Mao; Zhengyuan Xia

Background Acute lung injury (ALI) is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. Methods Adult male Sprague–Dawley rats received orthotopic autologous liver transplantation (OALT) and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB) p65 translocation was assessed by Western blot. Results The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. Conclusions Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.


Journal of Surgical Research | 2015

Propofol alleviates liver oxidative stress via activating Nrf2 pathway

Mian Ge; Weifeng Yao; Yanling Wang; Dongdong Yuan; Xinjin Chi; Gangjian Luo; Ziqing Hei

BACKGROUND Nuclear factor-E2-related factor 2 (Nrf2)-mediated antioxidant response is the main protective system of graft-liver against ischemia-reperfusion injury after liver transplantation. Propofol is considered to confer protective effects on different organs; thus, we explored the possibility that whether propofol could attenuate graft-liver injury in a rat autologous orthotopic liver transplantation (AOLT) model and mechanisms were associated with activation of Nrf2 pathway. METHODS Sprague-Dawley rats were randomly divided into four groups: sham-operated group, saline-treated AOLT group, low-dose propofol intervention group, and high-dose propofol intervention group. Liver injury was determined, and concentration of hydroxyl free radical (•OH), superoxide anion (O2(•-)), and malondialdehyde in the liver tissue were detected. The expression of Keap1, Nrf2, HO-1, and NQO1 were explored by Western blotting, and also the change of Nrf2 and keap1 was assessed by immunofluorescence. RESULTS Compared with sham group, pathologic damage of graft-livers was in a time-dependent manner, accompanied with the increased level of oxidative stress in the AOLT group, and nuclear Nrf2 expression and its downstream antioxidant enzyme, HO-1 and NQO1, were also increased in this group. However, in propofol pretreatment groups especially in the high-dose group, the pathologic score was significantly decreased, accompanied with a lower level of •OH, O2(•-), and malondialdehyde than that of the AOLT group. The change of oxidative stress might be related to the Nrf2 pathway, evidenced as the elevation of protein expression level of NQO1, HO-1, and nuclear Nrf2. CONCLUSIONS Protective effects of propofol against liver transplantation-induced graft-liver injury may be related with Keap1-Nrf2 signal pathway activation.


Scientific Reports | 2015

Dexmedetomidine Inhibits TLR4/NF-κB Activation and Reduces Acute Kidney Injury after Orthotopic Autologous Liver Transplantation in Rats

Hui Yao; Xinjin Chi; Yi Jin; Yiheng Wang; Pinjie Huang; Shan Wu; Zhengyuan Xia; Jun Cai

Patients who undergo orthotopic liver transplantation often sustain acute kidney injury(AKI). The toll-like receptor 4(TLR4)/Nuclear factor-кB(NF-кB) pathway plays a role in AKI. Dexmedetomidine(Dex) has been shown to attenuate AKI. The current study aimed to determine whether liver transplantation-induced AKI is associated with inflammatory response, and to assess the effects of dexmedetomidine pretreatment on kidneys in rats following orthotopic autologous liver transplantation(OALT). Seventy-seven adult male rats were randomized into 11 groups. Kidney tissue histopathology and levels of blood urea nitrogen(BUN) and serum creatinine(SCr) were evaluated. Levels of TLR4, NF-κB, tumor necrosis factor-α, and interleukin-1β levels were measured in kidney tissues. OALT resulted in significant kidney functional impairment and tissue injury. Pre-treatment with dexmedetomidine decreased BUN and SCr levels and reduced kidney pathological injury, TLR4 expression, translocation of NF-κB, and cytokine production. The effects of dexmedetomidine were reversed by pre-treatment with atipamezole and BRL44408, but not ARC239. These results were confirmed by using α2A-adrenergic receptor siRNA which reversed the protective effect of dexmedetomidine on attenuating NRK-52E cells injury induced by hypoxia reoxygenation. In conclusion, Dexmedetomidine-pretreatment attenuates OALT-induced AKI in rats which may be contributable to its inhibition of TLR4/MyD88/NF-κB pathway activation. The renoprotective effects are related to α2A-adrenergic receptor subtypes.


Mediators of Inflammation | 2010

Upregulation of TLR2/4 Expression in Mononuclear Cells in Postoperative Systemic Inflammatory Response Syndrome after Liver Transplantation

Ziqing Hei; Xinjin Chi; Nan Cheng; Gangjian Luo; Shangrong Li

Background. To explore the relationship between Toll-like rpheral blood mononuclear cells (PBMC) and systemic inflammatory response syndrome (SIRS) in postoperative patients of liver transplantation (LT). Methods. Blood samples of 27 patients receiving LT were collected at T1 (after induction of anaesthesia), T2 (25 minutes after the beginning of anhepatic phase), T3 (3 hours after graft reperfusion), and T4 (24 hours after graft reperfusion). The expression of TLR2/4 on PBMC and serum concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-8 were measured. The patients were divided into SIRS group (n = 12) and non-SIRS group (n = 15) for analysis. Results. Blood loss and transfusion were higher in the SIRS group than in the non-SIRS group. Both the preanhepatic and anhepatic phase were significantly longer in the SIRS group. The TLR2/4 expression on PBMC as well as serum TNF-α, IL-1β, and IL-8 were significantly higher at T3 and T4 than that at T1 and T2 in the SIRS patients. The expression of TLR4 on PBMC is positively correlated to serum TNF-α, IL-8. Expression of TLR2/4 on PBMC and serum concentrations of TNF-α, IL-1β, did not differ among the 4-time points in non-SIRS patients. Conclusions. Upregulation of TLR2/4 expression on PBMC may contribute to the development of postoperative SIRS during perioperative period of LT.


International Journal of Molecular Sciences | 2016

Dexmedetomidine Protects Rat Liver against Ischemia-Reperfusion Injury Partly by the α2A-Adrenoceptor Subtype and the Mechanism Is Associated with the TLR4/NF-κB Pathway

Yiheng Wang; Shan Wu; Xiaofang Yu; Shaoli Zhou; Mian Ge; Xinjin Chi; Jun Cai

Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling plays a dominant role in the pathogenesis of liver ischemia-reperfusion (IR) injury. Dexmedetomidine (Dex) protects the liver against IR injury via α2-adrenoceptor activation, but the contribution of TLR4 signaling remains unknown. The authors aimed to examine whether pretreatment with Dex produces hepatic protection and investigate the influence of Dex on TLR4/NF-κB signaling. Dex was given via intraperitoneal injection 30 min prior to orthotopic autologous liver transplantation (OALT) in rats, and three α2-adrenoceptor antagonists including atipamezole (a nonselective α2 receptor blocker), ARC-239 (a specific α2B/C blocker) and BRL-44408 (a specific α2A blocker) were injected intraperitoneally 10 min before Dex administration. Histopathologic evaluation of the liver and the measurement of serum alanine aminotransferase activity, TLR4/NF-κB expression in the liver, and pro-inflammatory factors (serum tumor necrosis factor-α, interleukin-1β and hepatic myeloperoxidase) concentrations were performed 8 h after OALT. Dex ameliorated liver injury after OALT probably by suppressing the TLR4/NF-κB pathway and decreasing inflammatory mediator levels. The protective effects of Dex were reversed by atipamezole and BRL-44408, but not by ARC-239, suggesting that these effects were mediated in part by the α2A subtype. In conclusion, Dex attenuates liver injury partly via the α2A-adrenoceptor subtype, and the mechanism is due to the suppression of the TLR4/NF-κB pathway.


Oncology Letters | 2013

Intestinal NF-E2-related factor-2 expression and antioxidant activity changes in rats undergoing orthotopic liver autotransplantation.

Mian Ge; Xinjin Chi; Ailan Zhang; Gangjian Luo; Guoliang Sun; Hanbin Xie; Ziqing Hei

Liver transplantation is known to trigger intestinal injuries. Oxidative damage that is induced by reactive oxygen species (ROS) plays a crucial role in ischemia-reperfusion injuries. NF-E2-related factor-2 (Nrf2) and its modulated antioxidant enzymes form the critical endogenous antioxidant system to scavenge ROS. The present study investigated the dynamic changes of intestinal ROS levels, Nrf2 expression and antioxidant enzyme activity following orthotopic liver autotransplantation (OLAT). Sprague-Dawley rats were randomly divided into five groups consisting of one sham group and four groups with rats that underwent OLAT and were evaluated following 4, 8, 16 and 24 h, respectively. The intestinal specimens were collected for histopathological examination and the detection of hydrogen peroxide (H2O2), hydroxyl radical (•OH), malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and the expression of Nrf2. The present study demonstrated that OLAT resulted in severe intestinal injury, which manifested as a significant change in the intestine pathological scores as early as 4 h and peaking at 8 h post-treatment. Oxidative stress was also revealed by the increase of the H2O2, •OH and MDA levels. Significant decreases were observed in the activity of SOD and CAT and a dramatic decrease occurred in the levels of GSH at 4 and 8 h post-treatment. All the parameters were restored gradually at 16 and 24 h post-treatment. The expression of Nrf2 in the intestinal tissues increased significantly at 4, 16 and 24 h following OLAT. The present study shows that an imbalance between oxidants and antioxidants contributes to intestinal oxidative injury, and that the upregulation of Nrf2 is not sufficient to withstand intestinal oxidative injury following OLAT.


Oxidative Medicine and Cellular Longevity | 2016

Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

Yihan Zhang; Dongdong Yuan; Weifeng Yao; Qianqian Zhu; Yue Liu; Fei Huang; Jiayu Feng; Xi Chen; Yong Huang; Xinjin Chi; Ziqing Hei

Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.


Oxidative Medicine and Cellular Longevity | 2015

Elevation of HO-1 Expression Mitigates Intestinal Ischemia-Reperfusion Injury and Restores Tight Junction Function in a Rat Liver Transplantation Model.

Xinjin Chi; Weifeng Yao; Hua Xia; Yi Jin; Xi Li; Jun Cai; Ziqing Hei

Aims. This study was aimed at investigating whether elevation of heme oxygenase-1 (HO-1) expression could lead to restoring intestinal tight junction (TJ) function in a rat liver transplantation model. Methods. Intestinal mucosa injury was induced by orthotopic autologous liver transplantation (OALT) on male Sprague-Dawley rats. Hemin (a potent HO-1 activator) and zinc-protoporphyrin (ZnPP, a HO-1 competitive inhibitor), were separately administered in selected groups before OALT. The serum and intestinal mucosa samples were collected at 8 hours after the operation for analysis. Results. Hemin pretreatment significantly reduced the inflammation and oxidative stress in the mucosal tissue after OALT by elevating HO-1 protein expression, while ZnPP pretreatment aggravated the OALT mucosa injury. Meanwhile, the restriction on the expression of tight junction proteins zonula occludens-1 and occludin was removed after hemin pretreatment. These molecular events led to significant improvement on intestinal barrier function, which was proved to be through increasing nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and reducing nuclear translocation of nuclear factor kappa-B (NF-κB) in intestinal injured mucosa. Summary. Our study demonstrated that elevation of HO-1 expression reduced the OALT-induced intestinal mucosa injury and TJ dysfunction. The HO-1 protective function was likely mediated through its effects of anti-inflammation and antioxidative stress.

Collaboration


Dive into the Xinjin Chi's collaboration.

Top Co-Authors

Avatar

Ziqing Hei

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weifeng Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Cai

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ailan Zhang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Mian Ge

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yi Jin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge