Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xuebin Dong is active.

Publication


Featured researches published by Xuebin Dong.


Proceedings of the National Academy of Sciences of the United States of America | 2010

NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis

Min Zhang; Alison C. Brewer; Katrin Schröder; Celio X.C. Santos; David Grieve; Minshu Wang; Narayana Anilkumar; Bin Yu; Xuebin Dong; Simon Walker; Ralf P. Brandes; Ajay M. Shah

Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses, but the role of different ROS sources remains unclear. Here we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level, which increases in cardiomyocytes under stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models, but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte hypoxia inducible factor 1 and the release of vascular endothelial growth factor, resulting in increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a unique inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of nonspecific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings.


Circulation Research | 2013

Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c.

Mélanie Abonnenc; Adam Nabeebaccus; Ursula Mayr; Javier Barallobre-Barreiro; Xuebin Dong; Friederike Cuello; Sumon Sur; Ignat Drozdov; Sarah R. Langley; Ruifang Lu; Konstantina Stathopoulou; Athanasios Didangelos; Xiaoke Yin; Wolfram-Hubertus Zimmermann; Ajay M. Shah; Anna Zampetaki; Manuel Mayr

Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-&bgr;. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (&agr;-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-β. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease. # Novelty and Significance {#article-title-44}


Stem Cells and Development | 2011

Amniotic fluid stem cells are cardioprotective following acute myocardial infarction.

Sveva Bollini; King K. Cheung; Johannes Riegler; Xuebin Dong; Nicola Smart; Marco Ghionzoli; S Loukogeorgakis; Panagiotis Maghsoudlou; Karina N. Dubé; Paul R. Riley; Mark F. Lythgoe; P De Coppi

In recent years, various types of stem cells have been characterized and their potential for cardiac regeneration has been investigated. We have previously described the isolation of broadly multipotent cells from amniotic fluid, defined as amniotic fluid stem (AFS) cells. The aim of this study was to investigate the therapeutic potential of human AFS cells (hAFS) in a model of acute myocardial infarction. Wistar rats underwent 30 min of ischemia by ligation of the left anterior descending coronary artery, followed by administration of hAFS cells and 2 h of reperfusion. Infarct size was assessed by 2,3,5-triphenyltetrazolium chloride staining and planimetry. hAFS cells were also analyzed by enzyme-linked immunosorbent assay to detect secretion of putative paracrine factors, such as the actin monomer-binding protein thymosin β4 (Tβ4). The systemic injection of hAFS cells and their conditioned medium (hAFS-CM) was cardioprotective, improving myocardial cell survival and decreasing the infarct size from 53.9%±2.3% (control animals receiving phosphate-buffered saline injection) to 40.0%±3.0% (hAFS cells) and 39.7%±2.5% (hAFS-CM, P<0.01). In addition, hAFS cells were demonstrated to secrete Tβ4, previously shown to be both cardioprotective and proangiogenic. Our results suggest that AFS cells have therapeutic potential in the setting of acute myocardial infarction, which may be mediated through paracrine effectors such as Tβ4. Therefore, AFS cells might represent a novel source for cell therapy and cell transplantation strategies in repair following ischemic heart disease, with a possible paracrine mechanism of action and a potential molecular candidate for acute cardioprotection.


Stem Cell Reviews and Reports | 2011

In Vitro and In Vivo Cardiomyogenic Differentiation of Amniotic Fluid Stem Cells

Sveva Bollini; Michela Pozzobon; Muriel Nobles; Johannes Riegler; Xuebin Dong; Martina Piccoli; Angela Chiavegato; Anthony N. Price; Marco Ghionzoli; King K. Cheung; Anna Cabrelle; Paul R. O’Mahoney; Emanuele Cozzi; Saverio Sartore; Andrew Tinker; Mark F. Lythgoe; Paolo De Coppi

Cell therapy has developed as a complementary treatment for myocardial regeneration. While both autologous and allogeneic uses have been advocated, the ideal candidate has not been identified yet. Amniotic fluid-derived stem (AFS) cells are potentially a promising resource for cell therapy and tissue engineering of myocardial injuries. However, no information is available regarding their use in an allogeneic context. c-kit-sorted, GFP-positive rat AFS (GFP-rAFS) cells and neonatal rat cardiomyocytes (rCMs) were characterized by cytocentrifugation and flow cytometry for the expression of mesenchymal, embryonic and cell lineage-specific antigens. The activation of the myocardial gene program in GFP-rAFS cells was induced by co-culture with rCMs. The stem cell differentiation was evaluated using immunofluorescence, RT-PCR and single cell electrophysiology. The in vivo potential of Endorem-labeled GFP-rAFS cells for myocardial repair was studied by transplantation in the heart of animals with ischemia/reperfusion injury (I/R), monitored by magnetic resonance imaging (MRI). Three weeks after injection a small number of GFP-rAFS cells acquired an endothelial or smooth muscle phenotype and to a lesser extent CMs. Despite the low GFP-rAFS cells count in the heart, there was still an improvement of ejection fraction as measured by MRI. rAFS cells have the in vitro propensity to acquire a cardiomyogenic phenotype and to preserve cardiac function, even if their potential may be limited by poor survival in an allogeneic setting.


Human Gene Therapy | 2001

In Vivo Gene Delivery via Portal Vein and Bile Duct to Individual Lobes of the Rat Liver Using a Polylysine-Based Nonviral DNA Vector in Combination with Chloroquine

Xiaohong Zhang; Louise Collins; Greta J. Sawyer; Xuebin Dong; Ying Qiu; John W. Fabre

The objective of this study was to evaluate a bifunctional synthetic peptide as a DNA vector for regional gene delivery to the rat liver by the portal vein and bile duct routes. The 31-amino-acid peptide (polylysine-molossin) comprises an amino-terminal chain of 16 lysines for electrostatic binding of DNA, and the 15 amino acid integrin-binding domain of the venom of the American pit viper, Crotalus molossus molossus. Initial in vitro evaluation demonstrated that polylysine-molossin/DNA complexes were much smaller (approximately 50-100nm versus 500-1300nm), more positively charged, and more stable in isotonic dextrose in comparisons with salt-containing solutions. However, polylysine-molossin/DNA complexes in any solution other than complete culture medium were ineffective for gene delivery in vitro. Vector localization studies demonstrated that both the portal vein and bile duct routes provided excellent access of polylysine-molossin/DNA complexes to the liver. However, complexes delivered by the portal vein were rapidly lost (<15 min) following re-establishment of the portal circulation, whereas complexes delivered by the bile duct persisted much longer. Polylysine-molossin/DNA complexes in various isotonic solutions were delivered to the right lateral lobes either by perfusion through a branch of the portal vein or by infusion into appropriate branches of the bile duct. Two or three hours before gene delivery, rats were given a single injection of chloroquine. We report that the polylysine-molossin vector is much more effective (>10-fold) when delivered by the bile duct route with all isotonic solutions evaluated, and that polylysine-molossin/DNA complexes in isotonic dextrose are much more effective (>10-fold) than complexes in salt-containing solutions.


Journal of Gene Medicine | 2003

The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct.

Xiaohong Zhang; Greta J. Sawyer; Xuebin Dong; Ying Qiu; Louise Collins; John W. Fabre

Assistance with exit from endocytic vesicles is a key factor for non‐viral gene delivery, and is a particular challenge in vivo. We have evaluated the in vivo use of chloroquine administered systemically, orally and/or locally for gene delivery to the liver.


American Journal of Physiology-heart and Circulatory Physiology | 2012

MRI-based prediction of adverse cardiac remodeling after murine myocardial infarction

Andrea Protti; Xuebin Dong; Alexander Sirker; René M. Botnar; Ajay M. Shah

Myocardial infarction (MI) results in adverse cardiac remodeling leading to heart failure and increased mortality. Experimental mouse models of MI are extensively used to identify mechanisms underlying adverse remodeling, but the extent of remodeling that occurs may be highly variable and can limit the utility to discover new disease pathways. The ability to predict the development of significant late post-MI remodeling would be invaluable in conducting such studies by increasing throughput and efficiency. This study aimed to identify potential thresholds of cardiac magnetic resonance imaging (MRI) parameters measured early after murine MI that would predict the development of significant adverse remodeling at 4 wk. MI was achieved by permanent coronary ligation and animals (n = 84) were followed up for 4 wk subsequently. MRI was used to assess left ventricular (LV) volumes, mass and ejection fraction, as well as infarct size (IS). Late gadolinium enhancement cine-MRI was performed at 2 days with standard cine-MRI at 30 days post-MI. Utilizing multiple logistic regression, we found that IS >36%, at 2 days post-MI, was the overall best single predictor of adverse remodeling at 30 days (sensitivity 80.7%, specificity 88.9%; C-statistic of 0.939 from receiver-operating curve analysis). LV end-systolic volume (LVESV) >32 μl was also an excellent predictor comparable to IS. The combination of IS >36% and/or LVESV >32 μl provided the highest predictive values for late adverse remodeling among multiple predictors. This study demonstrates that MRI-based estimation of IS and ESV during the acute phase of murine MI are good predictors of subsequent adverse remodeling that may aid experimental design.


Journal of Gene Medicine | 2008

Low-volume hydrodynamic gene delivery to the rat liver via an isolated segment of the inferior vena cava: efficiency, cardiovascular response and intrahepatic vascular dynamics.

Greta J. Sawyer; Aidan Grehan; Xuebin Dong; Michael Whitehorne; Michael Seddon; Ajay M. Shah; Xiaohong Zhang; Siamak Salehi; John W. Fabre

Clinical application of hydrodynamic gene delivery to the liver requires the use of small volumes, an evaluation of the cardiovascular consequences of acute volume overload, and a better understanding of the intrahepatic vascular pressures driving gene delivery. Injection of DNA solution into the isolated segment of inferior vena cava (IVC) draining the hepatic veins is a potentially valuable low‐volume approach.


Journal of the American Heart Association | 2015

Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI)

Andrea Protti; Begoña Lavin; Xuebin Dong; Silvia Lorrio; Simon P. Robinson; David C. Onthank; Ajay M. Shah; René M. Botnar

Background Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin–specific contrast agent (Gd-ESMA) was used to image tropoelastin and mature elastin fibers for in vivo assessment of extracellular matrix remodeling post-MI. Methods and Results Gd-ESMA enhancement was studied in a mouse model of myocardial infarction using a 7 T MRI scanner and results were compared to those achieved after injection of a nonspecific control contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In the infarcted tissue, Gd-ESMA uptake (measured as R1 relaxation rate) steadily increased from day 3 to day 21 as a result of the synthesis of elastin/tropoelastin. R1 values were in good agreement with histological findings. A similar R1 behavior was observed in the remote myocardium. No mature cross-linked elastin was found at any time point. In contrast, Gd-DTPA uptake was only observed in the infarct with no changes in R1 values between 3 and 21 days post-MI. Conclusions We demonstrate the feasibility of in vivo imaging of extracellular matrix remodeling post-MI using a tropoelastin/elastin binding MR contrast agent, Gd-ESMA. We found that tropoelastin is the main contributor to the increased MRI signal at late stages of MI where its augmentation in areas of infarction was in good agreement with the R1 increase.


Human Gene Therapy | 2008

Intestinal Lactase as an Autologous β-Galactosidase Reporter Gene for In Vivo Gene Expression Studies

Siamak Salehi; Lorna Eckley; Greta J. Sawyer; Xiaohong Zhang; Xuebin Dong; Jean-Noel Freund; John W. Fabre

Intestinal lactase has potential as an autologous beta-galactosidase reporter gene for long-term gene expression studies in vivo, using chromogenic, luminescent, and fluorogenic substrates developed for Escherichia coli beta-galactosidase. In normal rat tissues, reactivity with a chromogenic fucopyranoside (X-Fuc, the preferred substrate of lactase) was present only at the lumenal surface of small intestine epithelial cells. Full-length lactase (domains I-IV), mature lactase (domains III and IV), and a cytosolic form of mature lactase (domains III and IV, without the signal sequence or transmembrane region) were evaluated. Transfection of HuH-7 cells in vitro, and hydrodynamic gene delivery to the liver in vivo, resulted in excellent gene expression. The full-length and mature (homodimeric, membrane-bound) forms reacted strongly with X-Fuc but not with the corresponding galactopyranoside (X-Gal). However, the presumptively monomeric cytosolic lactase unexpectedly reacted equally well with both substrates. The fluorogenic substrate fluorescein-di-beta-D-galactopyranoside was cleaved by cytosolic lactase, but not by full-length or mature lactase. Full-length lactase, when expressed ectopically in hepatocytes in vivo, localized exclusively to the bile canalicular membrane. Intestinal lactase is highly homologous in mice, rats, and humans and has considerable potential for evaluating long-term gene expression in experimental animals and the clinic.

Collaboration


Dive into the Xuebin Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge