Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueda Hu is active.

Publication


Featured researches published by Xueda Hu.


Nature Genetics | 2011

Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.

Yaoting Gui; Guangwu Guo; Yi Huang; Xueda Hu; Aifa Tang; Shengjie Gao; Renhua Wu; Chao Chen; Xianxin Li; Liang Zhou; Minghui He; Zesong Li; Xiaojuan Sun; Wenlong Jia; Jinnong Chen; Shangming Yang; Fangjian Zhou; Xiaokun Zhao; Shengqing Wan; Rui Ye; Chaozhao Liang; Zhisheng Liu; Peide Huang; Chunxiao Liu; Hui Jiang; Yong Wang; Hancheng Zheng; Liang Sun; Xingwang Liu; Zhimao Jiang

Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.


Cell | 2012

Single-Cell Exome Sequencing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor

Xun Xu; Yong Hou; Xuyang Yin; Li Bao; Aifa Tang; Luting Song; Fuqiang Li; Shirley Tsang; Kui Wu; Hanjie Wu; Weiming He; Liang Zeng; Manjie Xing; Renhua Wu; Hui Jiang; Xiao Liu; Dandan Cao; Guangwu Guo; Xueda Hu; Yaoting Gui; Zesong Li; Wenyue Xie; Xiaojuan Sun; Min Shi; Zhiming Cai; Bin Wang; Meiming Zhong; Jingxiang Li; Zuhong Lu; Ning Gu

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.


Nature Biotechnology | 2012

Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

Zhiyu Peng; Yanbing Cheng; Bertrand Chin-Ming Tan; Lin Kang; Zhijian Tian; Yuankun Zhu; Wenwei Zhang; Yu Liang; Xueda Hu; Xuemei Tan; Jing Guo; Zirui Dong; Yan Liang; Li Bao; Jun Wang

RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)+, poly(A)− and small RNA samples. We developed a computational pipeline that carefully controls for false positives while calling RNA editing events from genome and whole-transcriptome data of the same individual. We identified 22,688 RNA editing events in noncoding genes and introns, untranslated regions and coding sequences of protein-coding genes. Most changes (∼93%) converted A to I(G), consistent with known editing mechanisms based on adenosine deaminase acting on RNA (ADAR). We also found evidence of other types of nucleotide changes; however, these were validated at lower rates. We found 44 editing sites in microRNAs (miRNAs), suggesting a potential link between RNA editing and miRNA-mediated regulation. Our approach facilitates large-scale studies to profile and compare editomes across a wide range of samples.


Genome Research | 2010

Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome

Guojie Zhang; Guangwu Guo; Xueda Hu; Yong Zhang; Qiye Li; Ruiqiang Li; Ruhong Zhuang; Zhike Lu; Zengquan He; Xiaodong Fang; Li Chen; Wei Tian; Yong Tao; Karsten Kristiansen; Xiuqing Zhang; Songgang Li; Huanming Yang; Jian Wang; Jun Wang

Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative splicing in the rice transcriptome revealed that alternative cis-splicing occurred in approximately 33% of all rice genes. This is far more than previously reported. In addition, we also identified 234 putative chimeric transcripts that seem to be produced by trans-splicing, indicating that transcript fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell. Taken together, our data provide extensive evidence that transcriptional regulation in rice is vastly more complex than previously believed.


PLOS Biology | 2010

The DNA methylome of human peripheral blood mononuclear cells

Yingrui Li; Jingde Zhu; Geng Tian; Ning Li; Qibin Li; Mingzhi Ye; Hancheng Zheng; Jian-Xin Yu; Honglong Wu; Jihua Sun; Hongyu Zhang; Quan Chen; Ruibang Luo; Minfeng Chen; Yinghua He; Xin Jin; Qinghui Zhang; Chang Yu; Guangyu Zhou; Jinfeng Sun; Yebo Huang; Huisong Zheng; Hongzhi Cao; Xiaoyu Zhou; Shicheng Guo; Xueda Hu; Xin Li; Karsten Kristiansen; Lars Bolund; Jiujin Xu

Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.


Nature Genetics | 2013

Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation

Guangwu Guo; Xiaojuan Sun; Chao Chen; Song Wu; Peide Huang; Zesong Li; Michael Dean; Yi Huang; Wenlong Jia; Quan Zhou; Aifa Tang; Zuoquan Yang; Xianxin Li; Pengfei Song; Xiaokun Zhao; Rui Ye; Shiqiang Zhang; Zhao Lin; Mingfu Qi; Shengqing Wan; Liangfu Xie; Fan Fan; Michael L. Nickerson; Xiangjun Zou; Xueda Hu; Li Xing; Zhaojie Lv; Hongbin Mei; Shengjie Gao; Chaozhao Liang

Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.


Nature Genetics | 2012

Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma

Guangwu Guo; Yaoting Gui; Shengjie Gao; Aifa Tang; Xueda Hu; Yi Huang; Wenlong Jia; Zesong Li; Minghui He; Liang Sun; Pengfei Song; Xiaojuan Sun; Xiaokun Zhao; Sangming Yang; Chaozhao Liang; Shengqing Wan; Fangjian Zhou; Chao Chen; Jialou Zhu; Xianxin Li; Minghan Jian; Liang Zhou; Rui Ye; Peide Huang; Jing Chen; Tao Jiang; Xiao Liu; Yong Wang; Jing Zou; Zhimao Jiang

We sequenced whole exomes of ten clear cell renal cell carcinomas (ccRCCs) and performed a screen of ∼1,100 genes in 88 additional ccRCCs, from which we discovered 12 previously unidentified genes mutated at elevated frequencies in ccRCC. Notably, we detected frequent mutations in the ubiquitin-mediated proteolysis pathway (UMPP), and alterations in the UMPP were significantly associated with overexpression of HIF1α and HIF2α in the tumors (P = 0.01 and 0.04, respectively). Our findings highlight the potential contribution of UMPP to ccRCC tumorigenesis through the activation of the hypoxia regulatory network.


PLOS ONE | 2010

Integrated Profiling of MicroRNAs and mRNAs: MicroRNAs Located on Xq27.3 Associate with Clear Cell Renal Cell Carcinoma

Liang Zhou; Jiahao Chen; Zhizhong Li; Xianxin Li; Xueda Hu; Yi Huang; Xiaokun Zhao; Chaozhao Liang; Yong Wang; Liang Sun; Min Shi; Xiaohong Xu; Feng Shen; Maoshan Chen; Zujing Han; Zhiyu Peng; Qingna Zhai; Jing Chen; Z. Zhang; Ruilin Yang; Jiongxian Ye; Zhichen Guan; Huanming Yang; Yaoting Gui; Jun Wang; Zhiming Cai; Xiuqing Zhang

Background With the advent of second-generation sequencing, the expression of gene transcripts can be digitally measured with high accuracy. The purpose of this study was to systematically profile the expression of both mRNA and miRNA genes in clear cell renal cell carcinoma (ccRCC) using massively parallel sequencing technology. Methodology The expression of mRNAs and miRNAs were analyzed in tumor tissues and matched normal adjacent tissues obtained from 10 ccRCC patients without distant metastases. In a prevalence screen, some of the most interesting results were validated in a large cohort of ccRCC patients. Principal Findings A total of 404 miRNAs and 9,799 mRNAs were detected to be differentially expressed in the 10 ccRCC patients. We also identified 56 novel miRNA candidates in at least two samples. In addition to confirming that canonical cancer genes and miRNAs (including VEGFA, DUSP9 and ERBB4; miR-210, miR-184 and miR-206) play pivotal roles in ccRCC development, promising novel candidates (such as PNCK and miR-122) without previous annotation in ccRCC carcinogenesis were also discovered in this study. Pathways controlling cell fates (e.g., cell cycle and apoptosis pathways) and cell communication (e.g., focal adhesion and ECM-receptor interaction) were found to be significantly more likely to be disrupted in ccRCC. Additionally, the results of the prevalence screen revealed that the expression of a miRNA gene cluster located on Xq27.3 was consistently downregulated in at least 76.7% of ∼50 ccRCC patients. Conclusions Our study provided a two-dimensional map of the mRNA and miRNA expression profiles of ccRCC using deep sequencing technology. Our results indicate that the phenotypic status of ccRCC is characterized by a loss of normal renal function, downregulation of metabolic genes, and upregulation of many signal transduction genes in key pathways. Furthermore, it can be concluded that downregulation of miRNA genes clustered on Xq27.3 is associated with ccRCC.


Applied Physics Letters | 1999

Cubic-phase GaN light-emitting diodes

Hui Yang; Lianxi Zheng; Junbo Li; Xinzhong Wang; Duanfu Xu; Y.T. Wang; Xueda Hu; P. D. Han

The feasibility of growing device-quality cubic GaN/GaAs(001) films by metal organic chemical vapor deposition has been demonstrated. The optical quality of the GaN films was characterized by room-temperature photoluminescence measurements, which shows a full width at half maximum of 46 meV. The structural quality of the films was investigated by transmission electron microscopy. There are submicron-size grains free from threading dislocations and stacking faults. More importantly, a cubic-phase GaN blue light-emitting diode has been fabricated. The device process, which is very simple and compatible with current GaAs technology, indicates a promising future for the blue light-emitting diode


PLOS ONE | 2011

Comparative mRNA and microRNA Expression Profiling of Three Genitourinary Cancers Reveals Common Hallmarks and Cancer-Specific Molecular Events

Xianxin Li; Jiahao Chen; Xueda Hu; Yi Huang; Zhizhong Li; Liang Zhou; Zhijian Tian; Hongyu Ma; Zhiyun Wu; Maoshan Chen; Zujing Han; Zhiyu Peng; Xiaokun Zhao; Chaozhao Liang; Yong Wang; Liang Sun; Jing Chen; Jun Zhao; Binghua Jiang; Huanming Yang; Yaoting Gui; Zhiming Cai; Xiuqing Zhang

Background Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA) in a single type of cancer. Methodology Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis. Principal Findings Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of ‘key’ miRNAs may result in the global aberration of one or more pathways or processes as a whole. Conclusions This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or therapeutic applications.

Collaboration


Dive into the Xueda Hu's collaboration.

Top Co-Authors

Avatar

Huanming Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuqing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangwu Guo

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaozhao Liang

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar

Hancheng Zheng

Beijing Institute of Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge