Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xufeng Kou is active.

Publication


Featured researches published by Xufeng Kou.


Nature Materials | 2014

Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure

Yabin Fan; Pramey Upadhyaya; Xufeng Kou; Murong Lang; So Takei; Zhenxing Wang; Jianshi Tang; Liang He; Li-Te Chang; Mohammad Montazeri; Guoqiang Yu; Wanjun Jiang; Tianxiao Nie; Robert N. Schwartz; Yaroslav Tserkovnyak; Kang L. Wang

Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures (HMFHs) have drawn great attention to spin torques arising from large spin-orbit coupling (SOC). Given the intrinsic strong SOC, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. Here we demonstrate experimentally the magnetization switching through giant SOT induced by an in-plane current in a chromium-doped TI bilayer heterostructure. The critical current density required for switching is below 8.9 × 10(4) A cm(-2) at 1.9 K. Moreover, the SOT is calibrated by measuring the effective spin-orbit field using second-harmonic methods. The effective field to current ratio and the spin-Hall angle tangent are almost three orders of magnitude larger than those reported for HMFHs. The giant SOT and efficient current-induced magnetization switching exhibited by the bilayer heterostructure may lead to innovative spintronics applications such as ultralow power dissipation memory and logic devices.


Physical Review Letters | 2014

Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit.

Xufeng Kou; Shih-Ting Guo; Yabin Fan; Lei Pan; Murong Lang; Ying Jiang; Qiming Shao; Tianxiao Nie; Koichi Murata; Jianshi Tang; Yong Wang; Liang He; Ting-Kuo Lee; Wei-Li Lee; Kang L. Wang

We investigate the quantum anomalous Hall effect (QAHE) and related chiral transport in the millimeter-size (Cr(0.12)Bi(0.26)Sb(0.62))₂Te₃ films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e²/h is found to persist even when the film thickness is beyond the two-dimensional (2D) hybridization limit. Meanwhile, the Chern insulator-featured chiral edge conduction is manifested by the nonlocal transport measurements. In contrast to the 2D hybridized thin film, an additional weakly field-dependent longitudinal resistance is observed in the ten-quintuple-layer film, suggesting the influence of the film thickness on the dissipative edge channel in the QAHE regime. The extension of the QAHE into the three-dimensional thickness region addresses the universality of this quantum transport phenomenon and motivates the exploration of new QAHE phases with tunable Chern numbers. In addition, the observation of scale-invariant dissipationless chiral propagation on a macroscopic scale makes a major stride towards ideal low-power interconnect applications.


Nano Letters | 2012

Gate-Controlled Surface Conduction in Na-Doped Bi2Te3 Topological Insulator Nanoplates

Yong Wang; Faxian Xiu; Lina Cheng; Liang He; Murong Lang; Jianshi Tang; Xufeng Kou; Xinxin Yu; Xiaowei Jiang; Zhigang Chen; Jin Zou; Kang L. Wang

Exploring exciting and exotic physics, scientists are pursuing practical device applications for topological insulators. The Dirac-like surface states in topological insulators are protected by the time-reversal symmetry, which naturally forbids backscattering events during the carrier transport process, and therefore offers promising applications in dissipationless spintronic devices. Although considerable efforts have been devoted to controlling their surface conduction, limited work has been focused on tuning surface states and bulk carriers in Bi(2)Te(3) nanostructures by external field. Here we report gate-tunable surface conduction in Na-doped Bi(2)Te(3) topological insulator nanoplates. Significantly, by applying external gate voltages, such topological insulators can be tuned from p-type to n-type. Our results render a promise in finding novel topological insulators with enhanced surface states.


Nano Letters | 2012

Surface-Dominated Conduction in a 6 nm thick Bi2Se3 Thin Film

Liang He; Faxian Xiu; Marcus Teague; Wanjun Jiang; Yabin Fan; Xufeng Kou; Murong Lang; Yong Wang; Guan Huang; N.-C. Yeh; Kang L. Wang

We report a direct observation of surface dominated conduction in an intrinsic Bi(2)Se(3) thin film with a thickness of six quintuple layers grown on lattice-matched CdS (0001) substrates by molecular beam epitaxy. Shubnikov-de Haas oscillations from the topological surface states suggest that the Fermi level falls inside the bulk band gap and is 53 ± 5 meV above the Dirac point, which is in agreement with 70 ± 20 meV obtained from scanning tunneling spectroscopies. Our results demonstrate a great potential of producing genuine topological insulator devices using Dirac Fermions of the surface states, when the film thickness is pushed to nanometer range.


Science | 2017

Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure

Qinglin He; Lei Pan; Alexander L. Stern; Edward C. Burks; Xiaoyu Che; Gen Yin; Jing Wang; Biao Lian; Quan Zhou; Eun Sang Choi; Koichi Murata; Xufeng Kou; Zhijie Chen; Tianxiao Nie; Qiming Shao; Yabin Fan; Shou-Cheng Zhang; Kai Liu; Jing Xia; Kang L. Wang

A propagating Majorana mode Although Majorana fermions remain elusive as elementary particles, their solid-state analogs have been observed in hybrid semiconductor-superconductor nanowires. In a nanowire setting, the Majorana states are localized at the ends of the wire. He et al. built a two-dimensional heterostructure in which a one-dimensional Majorana mode is predicted to run along the sample edge (see the Perspective by Pribiag). The heterostructure consisted of a quantum anomalous Hall insulator (QAHI) bar contacted by a superconductor. The authors used an external magnetic field as a “knob” to tune into a regime where a Majorana mode was propagating along the edge of the QAHI bar covered by the superconductor. A signature of this propagation—half-quantized conductance—was then observed in transport experiments. Science, this issue p. 294; see also p. 252 Transport experiments showing half-integer quantized conductance indicate a propagating Majorana edge mode. Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing.


Scientific Reports | 2012

Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te

Lihong Bao; Liang He; Nicholas Meyer; Xufeng Kou; Peng Zhang; Zhigang Chen; A. V. Fedorov; Jin Zou; Trevor M. Riedemann; Thomas A. Lograsso; Kang L. Wang; Gary Tuttle; Faxian Xiu

Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Bi2Se2Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Bi2Se2Te crystals show a well-defined linear dispersion without intersection of the conduction band. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherent length shows a power-law dependence with temperature (∼T−0.44), indicating the presence of the surface states. More importantly, the analysis of a Landau-level fan diagram of Shubnikov-de Hass oscillations yields a finite Berry phase of ∼0.42π, suggesting the Dirac nature of the surface states. Our results demonstrate that Bi2Se2Te can serve as a suitable topological insulator candidate for achieving intrinsic quantum transport of surface Dirac fermions.


Nano Letters | 2014

Electrical Detection of Spin-Polarized Surface States Conduction in (Bi0.53Sb0.47)2Te3 Topological Insulator

Jianshi Tang; Li-Te Chang; Xufeng Kou; Koichi Murata; Eun Sang Choi; Murong Lang; Yabin Fan; Ying Jiang; Mohammad Montazeri; Wanjun Jiang; Yong Wang; Liang He; Kang L. Wang

Strong spin-orbit interaction and time-reversal symmetry in topological insulators enable the spin-momentum locking for the helical surface states. To date, however, there has been little report of direct electrical spin injection/detection in topological insulator. In this Letter, we report the electrical detection of spin-polarized surface states conduction using a Co/Al2O3 ferromagnetic tunneling contact in which the compound topological insulator (Bi0.53Sb0.47)2Te3 was used to achieve low bulk carrier density. Resistance (voltage) hysteresis with the amplitude up to about 10 Ω was observed when sweeping the magnetic field to change the relative orientation between the Co electrode magnetization and the spin polarization of surface states. The two resistance states were reversible by changing the electric current direction, affirming the spin-momentum locking in the topological surface states. Angle-dependent measurement was also performed to further confirm that the abrupt change in the voltage (resistance) was associated with the magnetization switching of the Co electrode. The spin voltage amplitude was quantitatively analyzed to yield an effective spin polarization of 1.02% for the surface states conduction in (Bi0.53Sb0.47)2Te3. Our results show a direct evidence of spin polarization in the topological surface states conduction. It might open up great opportunities to explore energy-efficient spintronic devices based on topological insulators.


Physical Review Letters | 2015

Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field

Andrew Bestwick; Eli Fox; Xufeng Kou; Lei Pan; Kang L. Wang; David Goldhaber-Gordon

We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1  Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.


Nano Letters | 2014

Proximity Induced High-Temperature Magnetic Order in Topological Insulator - Ferrimagnetic Insulator Heterostructure

Murong Lang; Mohammad Montazeri; Mehmet C. Onbasli; Xufeng Kou; Yabin Fan; Pramey Upadhyaya; Kaiyuan Yao; Frank Liu; Ying Jiang; Wanjun Jiang; Kin L. Wong; Guoqiang Yu; Jianshi Tang; Tianxiao Nie; Liang He; Robert N. Schwartz; Yong Wang; Caroline A. Ross; Kang L. Wang

Introducing magnetic order in a topological insulator (TI) breaks time-reversal symmetry of the surface states and can thus yield a variety of interesting physics and promises for novel spintronic devices. To date, however, magnetic effects in TIs have been demonstrated only at temperatures far below those needed for practical applications. In this work, we study the magnetic properties of Bi2Se3 surface states (SS) in the proximity of a high Tc ferrimagnetic insulator (FMI), yttrium iron garnet (YIG or Y3Fe5O12). Proximity-induced butterfly and square-shaped magnetoresistance loops are observed by magneto-transport measurements with out-of-plane and in-plane fields, respectively, and can be correlated with the magnetization of the YIG substrate. More importantly, a magnetic signal from the Bi2Se3 up to 130 K is clearly observed by magneto-optical Kerr effect measurements. Our results demonstrate the proximity-induced TI magnetism at higher temperatures, an important step toward room-temperature application of TI-based spintronic devices.


Nano Letters | 2013

Competing weak localization and weak antilocalization in ultrathin topological insulators.

Murong Lang; Liang He; Xufeng Kou; Pramey Upadhyaya; Yabin Fan; Hao Chu; Ying Jiang; Jens H. Bardarson; Wangjun Jiang; Eun Sang Choi; Yong Wang; N.-C. Yeh; Joel E. Moore; Kang L. Wang

We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.

Collaboration


Dive into the Xufeng Kou's collaboration.

Top Co-Authors

Avatar

Kang L. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murong Lang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yabin Fan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Pan

University of California

View shared research outputs
Top Co-Authors

Avatar

Tianxiao Nie

University of California

View shared research outputs
Top Co-Authors

Avatar

Jianshi Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge