Yabo Guan
Medical College of Wisconsin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yabo Guan.
Medical & Biological Engineering & Computing | 2006
Yabo Guan; Narayan Yoganandan; Jiangyue Zhang; Frank A. Pintar; Joesph F. Cusick; Christopher E. Wolfla; Dennis J. Maiman
Very few finite element models on the lumbosacral spine have been reported because of its unique biomechanical characteristics. In addition, most of these lumbosacral spine models have been only validated with rotation at single moment values, ignoring the inherent nonlinear nature of the moment–rotation response of the spine. Because a majority of lumbar spine surgeries are performed between L4 and S1 levels, and the confidence in the stress analysis output depends on the model validation, the objective of the present study was to develop a unique finite element model of the lumbosacral junction. The clinically applicable model was validated throughout the entire nonlinear range. It was developed using computed tomography scans, subjected to flexion and extension, and left and right lateral bending loads, and quantitatively validated with cumulative variance analyses. Validation results for each loading mode and for each motion segment (L4-L5, L5-S1) and bisegment (L4-S1) are presented in the paper.
Journal of Neurosurgery | 2010
Harlan J. Bruner; Yabo Guan; Narayan Yoganandan; Frank A. Pintar; Dennis J. Maiman; Michael A. Slivka
OBJECT Interest is increasing in the development of polyaryletherketone (PAEK) implants for posterior lumbar fusion. Due to their inherent physical properties, including radiolucency and the ability to customize stiffness with carbon fiber reinforcement, they may be more advantageous than traditional instrumentation materials. Customization of these materials may allow for the development of a system that is stiff enough to promote fusion, yet flexible enough to avoid instrumentation failure. To understand the feasibility of using such materials in posterior lumbosacral instrumentation, biomechanical performances were compared in pure moment and combined loadings between two different PAEK composite rods and titanium rods. METHODS Four human cadaver L3-S1 segments were subjected to pure moment and combined (compressionflexion and compression-extension) loadings as intact specimens, and after L-4 laminectomy with complete L4-5 facetectomy. Pedicle screw/rod fixation constructs were placed from L-4 to S-1, and retested with titanium, pure poly(aryl-ether-ether-ketone) (PEEK), and carbon fiber reinforced PEEK (CFRP) rods. Reflective markers were fixed to each spinal segment. The range of motion data for the L3-S1 column and L4-5 surgical level were obtained using a digital 6-camera system. Four prewired strain gauges were glued to each rod at the level of the L-4 screw and were placed 90° apart along the axial plane of the rod to record local strain data in the combined loading mode. Biomechanical data were analyzed using the ANOVA techniques. RESULTS In pure moment, when compared with intact specimens, each rod material similarly restricted motion in each mode of bending, except axial rotation (p < 0.05). When compared with postfacetectomy specimens, each rod material similarly restricted motion (p < 0.05) in all bending modes. In combined loading, rod stiffness was similar for each material. Rod strain was the least in the titanium construct, intermediate in the CFRP construct, and maximal in the pure PEEK construct. CONCLUSIONS Pure PEEK and CFRP rods confer equal stiffness and resistance to motion in lumbosacral instrumentation when compared with titanium constructs in single-cycle loading. The carbon fiber reinforcement reduces strain when compared with pure PEEK in single-cycle loading. These biomechanical responses, combined with its radiolucency, suggest that the CFRP may have an advantage over both titanium and pure PEEK rods as a material for use in posterior lumbosacral instrumentation. Benchtop fatigue testing of the CFRP constructs is needed for further examination of their responses under multicycle loading.
Accident Analysis & Prevention | 2010
Narayan Yoganandan; Jamie L. Baisden; Dennis J. Maiman; Thomas A. Gennarelli; Yabo Guan; Frank A. Pintar; Prakash Laud; Stephen A. Ridella
Severe-to-fatal head injuries in motor vehicle environments were analyzed using the United States Crash Injury Research and Engineering Network database for the years 1997-2006. Medical evaluations included details and photographs of injury, and on-scene, trauma bay, emergency room, intensive care unit, radiological, operating room, in-patient, and rehabilitation records. Data were synthesized on a case-by-case basis. X-rays, computed tomography scans, and magnetic resonance images were reviewed along with field evaluations of scene and photographs for the analyses of brain injuries and skull fractures. Injuries to the parenchyma, arteries, brainstem, cerebellum, cerebrum, and loss of consciousness were included. In addition to the analyses of severe-to-fatal (AIS4+) injuries, cervical spine, face, and scalp trauma were used to determine the potential for head contact. Fatalities and survivors were compared using nonparametric tests and confidence intervals for medians. Results were categorized based on the mode of impact with a focus on head contact. Out of the 3178 medical cases and 169 occupants sustaining head injuries, 132 adults were in frontal (54), side (75), and rear (3) crashes. Head contact locations are presented for each mode. A majority of cases clustered around the mid-size anthropometry and normal body mass index (BMI). Injuries occurred at change in velocities (DeltaV) representative of US regulations. Statistically significant differences in DeltaV between fatalities and survivors were found for side but not for frontal impacts. Independent of the impact mode and survivorship, contact locations were found to be superior to the center of gravity of the head, suggesting a greater role for angular than translational head kinematics. However, contact locations were biased to the impact mode: anterior aspects of the frontal bone and face were involved in frontal impacts while temporal-parietal regions were involved in side impacts. Because head injuries occur at regulatory DeltaV in modern vehicles and angular accelerations are not directly incorporated in crashworthiness standards, these findings from the largest dataset in literature, offer a field-based rationale for including rotational kinematics in injury assessments. In addition, it may be necessary to develop injury criteria and evaluate dummy biofidelity based on contact locations as this parameter depended on the impact mode. The current field-based analysis has identified the importance of both angular acceleration and contact location in head injury assessment and mitigation.
Journal of Biomechanics | 2011
Jiangyue Zhang; Narayan Yoganandan; Frank A. Pintar; Yabo Guan; Barry S. Shender; Glenn Paskoff; Purushottam W. Laud
Postmortem preservation conditions may be one of factors contributing to wide material property variations in brain tissues in literature. The objective of present study was to determine the effects of preservation temperatures on high strain-rate material properties of brain tissues using the split Hopkinson pressure bar (SHPB). Porcine brains were harvested immediately after sacrifice, sliced into 2 mm thickness, preserved in ice cold (group A, 10 samples) and 37°C (group B, 9 samples) saline solution and warmed to 37°C just prior to the test. A SHPB with tube aluminum transmission bar and semi-conductor strain gauges were used to enhance transmitted wave signals. Data were gathered using a digital acquisition system and processed to obtain stress-strain curves. All tests were conducted within 4 h postmortem. The mean strain-rate was 2487±72 s(-1). A repeated measures model with specimen-level random effects was used to analyze log transformed stress-strain responses through the entire loading range. The mean stress-strain curves with ±95% confidence bands demonstrated typical power relationships with the power value of 2.4519 (standard error, 0.0436) for group A and 2.2657 (standard error, 0.0443) for group B, indicating that responses for the two groups are significantly different. Stresses and tangent moduli rose with increasing strain levels in both groups. These findings indicate that storage temperatures affected brain tissue material properties and preserving tissues at 37°C produced a stiffer response at high strain-rates. Therefore, it is necessary to incorporate material properties obtained from appropriately preserved tissues to accurately predict the responses of brain using stress analyses models, such as finite element simulations.
Traffic Injury Prevention | 2009
Narayan Yoganandan; Dennis J. Maiman; Yabo Guan; Frank A. Pintar
Objectives: To demonstrate the importance of using specimen-specific head physical properties in head-neck dynamics. Methods: Eight postmortem human subjects were subjected to side impact. A 9-axis accelerometer package was used to obtain head translational accelerations. After test, the head was isolated at the skull base, circumference, breadth, and length were obtained, and mass, center of gravity, and occipital condylar locations and moments of inertia were determined. Using specimen-specific and gathered accelerations, 3-dimensional head center of gravity accelerations and forces and moments at the occipital condyles were computed. Head physical properties were also extracted from regression equations using external dimensions of each subject. Using these properties and gathered kinematics, above-described accelerations and forces and moments were computed and compared with specimen-specific results. Results: Head masses predicted by stature and total body mass were more in close agreement with specimen-specific data than head masses predicted by head circumference or head circumference and head length. The center of gravity to the occipital condyle vector was shorter in the literature-based dataset than the actual specimen-specific vector. Differences in moments of inertias between predicted and specimen-specific data ranged from −15 to 59 percent. Variations in peak antero-posterior shear, lateral shear, and axial force ranged from −12 to 46 percent, −21 to 78 percent, and −17 to 50 percent. Differences in peak lateral moment, sagittal moment, and axial torque ranged from −45 to 78 percent, −86 to 327 percent, and −96 to 112 percent. These were normalized using specimen-specific data. Conclusions: Considerable variations in physical properties and injury metrics between data obtained from literature-based regression equations and actual data for each specimen suggest the critical importance of specimen-specific data to accurately describe the biodynamic response and establish tolerance criteria. Because neck dynamics control head kinematics (and vice versa), these results emphasize the need to determine physical properties of each specimen following impact tests.
Journal of Spinal Disorders & Techniques | 2008
Yabo Guan; Narayan Yoganandan; Dennis J. Maiman; Frank A. Pintar
Study Design Determination of external and internal responses of the human lumbosacral spine using a validated 3-dimensional finite element model. Objective The objective of the present study was to evaluate the range of motion, disc stress, and facet joint pressure owing to anterior fusion at L4-L5 or L5-S1 level and compare with the intact spine. Summary of Background Data A significant majority of finite element models of anterior lumbar interbody fusion are primarily focused on upper and middle levels, whereas lower spinal levels are most commonly treated with surgery. Methods A 3-dimensional L4-S1 finite element model, validated in the entire nonlinear range of the moment-rotation response, was used to determine ranges of motion, disc stress, and facet joint contact pressure under normal and 2 surgical conditions with bone graft and porous tantalum. Biomechanical responses were compared under flexion and extension loading between the 2 fusions and fusion masses and at the fused and intact segments. Results Moment-rotation responses were nonlinear under all conditions. The range of motion at the caudal level was greater than the range of motion at the rostral level in the intact spine. The range of motion of the L4-S1 spine decreased more with the caudal than rostral fusion and more with the tantulum than bone under both loading modes. Facet joint pressures increased more with the rostral than caudal fusion. Stresses in the adjacent disc were greater with the caudal than rostral fusion under both modes of loading. Conclusions At the fused level, the caudal fusion imparted additional rigidity under flexion to the lumbosacral joint. Both fusion masses added flexibility to the adjacent segment. Under both fusion masses, increased facet joint pressure in the lumbosacral joint indicates the susceptibility of this transitional joint to long-term biomechanics-induced consequences. Increased facet joint pressures with the rostral fusion indicate that the posterior complex responds with increased load sharing, and may predispose the spine to facet-related arthropathy. Increased stresses in the adjacent disc with the caudal fusion under both modes of loading imply the potential to disc-related changes owing to long-term physiologic loading.
ASME 2007 Summer Bioengineering Conference | 2007
Jiangyue Zhang; Narayan Yoganandan; Frank A. Pintar; Yabo Guan; Thomas A. Gennarelli
Ballistic-induced traumatic brain injury remains the most severe type of injury with the highest rate of fatality. Yet, its injury biomechanics remains the least understood. Ballistic injury biomechanics studies have been mostly focused on the trunk and extremities using large gelatin blocks with unconstrained boundaries [1, 2]. Results from these investigations are not directly applicable to brain injuries studies because the human head is smaller and the soft brain is enclosed in a relatively rigid cranium. Thali et al. developed a “skin-skull-brain” model to reproduce gunshot wounds to the head for forensic purposes [3]. These studies focused on wound morphology to the skull rather than brain injury. Watkins et al. used human dry skulls filled with gelatin and investigated temporary cavities and pressure change [4]. However, the frame rate of the cine X-ray was too slow to describe the cavity dynamics, and pressures were only quantified at the center of skull. In addition, the ordnance gelatin used in these studies is not the most suitable simulant to model brain material because of differences in dynamic moduli [5]. Sylgard gel (Dow Corning Co., Midland, MI) demonstrates similar behavior as the brain and has been used as a brain surrogate to determine brain deformations under blunt impact loading [6, 7]. Zhang et al. used the simulant for ballistic brain injury and investigated the correlation between temporary cavity pulsation and pressure change [8, 9]. However, the skulls used in these models were not as rigid as the human cranium. The presence of a stronger cranial bone may significantly decrease the projectile velocity and change the kinematics of cavity and pressure distribution in the cranium. In addition, projectiles perforated through the models in these studies. Patients with through-and-through perforating gunshot wounds to the head have a greater fatality rate than patients with non-exit penetrating wounds [10]. Therefore, it is more clinically relevant to investigate non-exit ballistic traumatic brain injuries. Consequently, the current study is designed to investigate the brain injury biomechanics from non-exit penetrating projectile using an appropriately sized and shaped physical head model.
ASME 2009 Summer Bioengineering Conference, Parts A and B | 2009
Yabo Guan; Harlan J. Bruner; Narayan Yoganandan; Frank A. Pintar; Dennis J. Maiman
Carbon-fiber-reinforced (CFR) polyetheretherketone (PEEK) combines the high strength of metals with the extensive biocompatibility and imaging compatibility of polymers. CFR PEEK composite is similar to the stiffness of cortical bone (approximately 15–20 GPa) and shows comparable performance to metallic materials such as titanium alloy, cobalt chrome alloy, and stainless steel in terms of strength. CFR-PEEK becomes an attractive alternative to the metallic materials traditionally used in spinal implants (e.g. pedicle screw rod fixation). Finite element (FE) models have been developed to study the biomechanical behaviors of spinal structures with pedicle screw rod fixation ([1–5]). However, it is limited to implement these models to study the bone screw interaction, and local bone strain at the bone screw interface due to the intrinsic low mesh density of the intact model. The aim of this study is to develop a refined block fixation FE model to investigate the load sharing, bone screw interaction, and strain/stress in CFR PEEK construct.© 2009 ASME
Journal of Biomechanics | 2007
Yabo Guan; Narayan Yoganandan; Jason Moore; Frank A. Pintar; Jiangyue Zhang; Dennis J. Maiman; Purushottam W. Laud
Journal of Biomechanics | 2007
Jiangyue Zhang; Narayan Yoganandan; Frank A. Pintar; Yabo Guan; Thomas A. Gennarelli