Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanhai Yin is active.

Publication


Featured researches published by Yanhai Yin.


Cell | 2002

BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation

Yanhai Yin; Zhi-Yong Wang; Santiago Mora-García; Jianming Li; Shigeo Yoshida; Tadao Asami; Joanne Chory

Plant steroid hormones, known as brassinosteroids (BRs), signal through a plasma membrane localized receptor kinase BRI1. We identified bes1, a semidominant suppressor of bri1, which exhibits constitutive BR response phenotypes including long and bending petioles, curly leaves, accelerated senescence, and constitutive expression of BR-response genes. BES1 accumulates in the nucleus in response to BRs. BES1 is phosphorylated and appears to be destabilized by the glycogen synthase kinase-3 (GSK-3) BIN2, a negative regulator of the BR pathway. These results establish a signaling cascade for BRs with similarities to the Wnt pathway, in which signaling through cell surface receptors leads to inactivation of a GSK-3 allowing accumulation of a nuclear protein that regulates target gene expression.


Cell | 2005

A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in Arabidopsis

Yanhai Yin; Dionne Vafeados; Yi Tao; Shigeo Yoshida; Tadao Asami; Joanne Chory

Brassinosteroids (BRs) signal through a plasma membrane-localized receptor kinase to regulate plant growth and development. We showed previously that a novel protein, BES1, accumulates in the nucleus in response to BRs, where it plays a role in BR-regulated gene expression; however, the mechanism by which BES1 regulates gene expression is unknown. In this study, we dissect BES1 subdomains and establish that BES1 is a transcription factor that binds to and activates BR target gene promoters both in vitro and in vivo. BES1 interacts with a basic helix-loop-helix protein, BIM1, to synergistically bind to E box (CANNTG) sequences present in many BR-induced promoters. Loss-of-function and gain-of-function mutants of BIM1 and its close family members display BR response phenotypes. Thus, BES1 defines a new class of plant-specific transcription factors that cooperate with transcription factors such as BIM1 to regulate BR-induced genes.


The Plant Cell | 2004

Heterodimerization and Endocytosis of Arabidopsis Brassinosteroid Receptors BRI1 and AtSERK3 (BAK1)

Eugenia Russinova; Jan Willem Borst; Mark Kwaaitaal; Ana I. Caño-Delgado; Yanhai Yin; Joanne Chory; Sacco C. de Vries

In Arabidopsis thaliana brassinosteroid (BR), perception is mediated by two Leu-rich repeat receptor-like kinases, BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) (Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE3 [AtSERK3]). Genetic, biochemical, and yeast (Saccharomyces cerevisiae) interaction studies suggested that the BRI1-BAK1 receptor complex initiates BR signaling, but the role of the BAK1 receptor is still not clear. Using transient expression in protoplasts of BRI1 and AtSERK3 fused to cyan and yellow fluorescent green fluorescent protein variants allowed us to localize each receptor independently in vivo. We show that BRI1, but not AtSERK3, homodimerizes in the plasma membrane, whereas BRI1 and AtSERK3 preferentially heterodimerize in the endosomes. Coexpression of BRI1 and AtSERK3 results in a change of the steady state distribution of both receptors because of accelerated endocytosis. Endocytic vesicles contain either BRI1 or AtSERK3 alone or both. We propose that the AtSERK3 protein is involved in changing the equilibrium between plasma membrane–located BRI1 homodimers and endocytosed BRI1-AtSERK3 heterodimers.


Development | 2004

BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis.

Ana I. Caño-Delgado; Yanhai Yin; Cong Yu; Dionne Vafeados; Santiago Mora-García; Jin-Chen Cheng; Kyoung Hee Nam; Jianming Li; Joanne Chory

Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.


Plant Journal | 2011

A brassinosteroid transcriptional network revealed by genome‐wide identification of BESI target genes in Arabidopsis thaliana

Xiaofei Yu; Lei Li; Jaroslaw Zola; Maneesha Aluru; Huaxun Ye; Andrew Foudree; Hongqing Guo; Sarah Anderson; Srinivas Aluru; Peng Liu; Steve Rodermel; Yanhai Yin

Brassinosteroids (BRs) are important regulators for plant growth and development. BRs signal to control the activities of the BES1 and BZR1 family transcription factors. The transcriptional network through which BES1 and BZR regulate large number of target genes is mostly unknown. By combining chromatin immunoprecipitation coupled with Arabidopsis tiling arrays (ChIP-chip) and gene expression studies, we have identified 1609 putative BES1 target genes, 404 of which are regulated by BRs and/or in gain-of-function bes1-D mutant. BES1 targets contribute to BR responses and interactions with other hormonal or light signaling pathways. Computational modeling of gene expression data using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals that BES1-targeted transcriptional factors form a gene regulatory network (GRN). Mutants of many genes in the network displayed defects in BR responses. Moreover, we found that BES1 functions to inhibit chloroplast development by repressing the expression of GLK1 and GLK2 transcription factors, confirming a hypothesis generated from the GRN. Our results thus provide a global view of BR regulated gene expression and a GRN that guides future studies in understanding BR-regulated plant growth.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana

Hongqing Guo; Lei Li; Huaxun Ye; Xiaofei Yu; Alexandria Algreen; Yanhai Yin

Cell elongation in plants is controlled by environmental cues such as light and internal growth regulators including plant steroid hormones, brassinosteroids (BRs). In this study, we found that 3 related receptor-like kinases (RLKs), HERCULES1, THESEUS1, and FERONIA, are transcriptionally induced by BRs and are down-regulated in the loss-of-function BR mutant bri1 and up-regulated in the constitutive BR-response mutant bes1-D. These RLKs belong to the CrRLK family that has 17 members in Arabidopsis. We hypothesize that these RLKs are involved in BR-regulated processes. Although 2 of the RLKs were recently found to mediate male-female interaction during pollen tube reception (FERONIA) and to sense cell wall integrity (THESEUS1), our genetic studies demonstrated that they are required for cell elongation during vegetative growth as herk1 the1 double and fer RNAi mutants displayed striking dwarf phenotypes. The herk1 the1 double mutant enhances the dwarf phenotype of bri1 and partially suppresses bes1-D phenotype, supporting a role of HERK1/THE1 in BR-mediated cell elongation. Microarray experiments demonstrated that these RLKs control the expression of a unique set of genes including those implicated in cell elongation and 16% of the genes affected in herk1 the1 are regulated by BRs. Our results, therefore, identify a previously unknown pathway that functions cooperatively with, but largely independent of the BR pathway to regulate cell elongation. The work establishes a platform to identify other signaling components in this important pathway for plant growth and provides a paradigm to study the coordination of independent pathways in the regulation of a common biological process.Plant growth is dictated by both developmental and environmental cues, many of which are perceived by receptor-like kinases (RLKs). In Arabidopsis, there are more than 600 RLKs; but the functions of most of them are unknown. We recently found that several members of CrRLK1L family RLKs are regulated by plant steroid hormone Brassinosteroids (BRs). Two of the RLKs, FERONIA (FER) and THESEUS1 (THE1) have been previously found to inhibit cell elongation during pollen tube/synergid cell recognition and in sensing cell wall integrity after damage, respectively. However, we found that HERCULES1 (HERK1), another member in the family, as well as THE1 and FER, are regulated by BRs and required for cell elongation during vegetative growth. Here we provide additional evidence for the regulation of the family members by BR effector protein BES1. We also show that another member in the family, designated as HERCULES2 (HERK2), functions redundantly with HERK1 and THE1 to promote stem elongation. Our results, together with those from others, provide compelling evidence that the CrRLK1L family members play important role in plant growth.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis

Xiaofei Yu; Li Li; Lei Li; Michelle Guo; Joanne Chory; Yanhai Yin

Plant steroid hormones, brassinosteroids (BRs), are of great importance for plant growth and development. BRs signal through a cell surface receptor kinase, BRI1, and a GSK3-like kinase, BIN2, to regulate the BES1/BZR1 family of transcription factors, which directly bind to target gene promoters to activate or repress gene expression and mediate BR responses. To understand how BES1 regulates target gene expression, we identified two BES1-interacting proteins, ELF6 (early flowering 6) and its homolog REF6 (relative of early flowering 6), both of which are Jumonji N/C (JmjN/C) domain-containing proteins and were previously found to regulate flowering time. The interactions between BES1 and ELF6/REF6 were confirmed by GST pull-down and BiFC (bimolecular fluorescence complementation) experiments. Mutations in ELF6 or REF6 genes in Arabidopsis lead to BR-related phenotypes, including impaired cell elongation and reduced expression of BR target genes. Chromatin immunoprecipitation (ChIP) experiments indicated that histone 3 lysine 9 (H3K9) methylation status was changed in elf6 and ref6 mutants, consistent with recent findings that many Jmj proteins are histone demethylases. Our results demonstrate that BES1 recruits other transcriptional regulators such as ELF6 and REF6 to regulate target gene expression and coordinate BR responses with other developmental processes such as control of flowering time. Jmj domain-containing histone demethylases are involved in gene expression in many developmental processes and diseases, but how these proteins affect specific pathways is not well understood. Thus, our study establishes an important mechanism by which Jmj domain proteins modulate specific gene expression by interacting with pathway-specific transcription factors such as BES1.


Plant Journal | 2009

DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice

Hongning Tong; Yun Jin; Wenbo Liu; Feng Li; Jun Fang; Yanhai Yin; Qian Qian; Lihuang Zhu; Chengcai Chu

Rapid progress has been made regarding the understanding of brassinosteroid (BR) signaling in Arabidopsis. However, little is known about BR signaling in monotyledons. Here, we characterized a rice dwarf and low-tillering (dlt) mutant and cloned the corresponding gene via map-based cloning. DLT encodes a new member of the plant-specific GRAS family. The dwarf phenotype of dlt is similar to BR-deficient or signaling mutants in rice. In addition, both lamina bending and coleoptile elongation assays show that dlt is insensitive or much less responsive to brassinolide (BL), the most active BR, suggesting that DLT is involved in BR signaling. Consistent with this conclusion, the accumulation of transcripts of BR biosynthesis genes in the dlt mutant indicated that DLT is involved in feedback inhibition of BR biosynthesis genes. In addition, transcription of several other BR-regulated genes is altered in the dlt mutant. Finally, consistent with the fact that DLT is also negatively feedback-regulated by BR treatment, a gel mobility shift assay showed that OsBZR1 can bind to the DLT promoter through the BR-response element. Taken together, these studies have enabled us to identify a new signaling component that is involved in several specific BR responses in rice.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development

Qianqian Ye; Wenjiao Zhu; Lei Li; Shanshan Zhang; Yanhai Yin; Hong Ma; Xuelu Wang

The development of anther and pollen is important for male reproduction, and this process is coordinately regulated by many external and internal cues. In this study, we systematically examined the male reproductive phenotypes of a series of brassinosteroid biosynthetic and signaling mutants and found that, besides the expected cell-expansion defects, these mutants also showed reduced pollen number, viability, and release efficiency. These defects were related with abnormal tapetum and microspore development. Using both real-time quantitative RT-PCR and microarray experiments, we found that the expression of many key genes required for anther and pollen development was suppressed in these mutants. ChIP analysis demonstrated that BES1, an important transcription factor for brassinosteroid signaling, could directly bind to the promoter regions of genes encoding transcription factors essential for anther and pollen development, SPL/NZZ, TDF1, AMS, MS1, and MS2. Taken together, these data lead us to propose that brassinosteroids control male fertility at least in part via directly regulating key genes for anther and pollen development in Arabidopsis. Our work provides a unique mechanism to explain how a phytohormone regulates an essential genetic program for plant development.


Plant Journal | 2009

Arabidopsis MYB30 is a Direct Target of BES1 and Cooperates with BES1 to Regulate Brassinosteroid-Induced Gene Expression

Lei Li; Xiaofei Yu; Addie Thompson; Michelle Guo; Shigeo Yoshida; Tadao Asami; Joanne Chory; Yanhai Yin

A paradox of plant hormone biology is how a single small molecule can affect a diverse array of growth and developmental processes. For instance, brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 (bri1-Ethylmethane Sulphonate suppressor 1/brassinazole-resistant 1) family of transcription factors, which regulate hundreds of target genes involved in this pathway, yet little is known of this transcriptional network. Through microarray and chromatin immunoprecipitation (ChIP) experiments, we identified a direct target gene of BES1, AtMYB30, which encodes an MYB family transcription factor. AtMYB30 null mutants display decreased BR responses and enhance the dwarf phenotype of a weak allele of the BR receptor mutant bri1. Many BR-regulated genes have reduced expression and/or hormone-induction in AtMYB30 mutants, indicating that AtMYB30 functions to promote expression of a subset of BR target genes. AtMYB30 and BES1 bind to a conserved MYB-binding site and E-box sequences, respectively, in the promoters of genes that are regulated by both BRs and AtMYB30. Finally, AtMYB30 and BES1 interact with each other both in vitro and in vivo. These results demonstrate that BES1 and AtMYB30 function cooperatively to promote BR target gene expression. Our results therefore establish a new mechanism by which AtMYB30, a direct target of BES1, functions to amplify BR signaling by helping BES1 activate downstream target genes.

Collaboration


Dive into the Yanhai Yin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huaxun Ye

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Lei Li

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Joanne Chory

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengcai Chu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongning Tong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingcai Zhang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge