Yanyan Tang
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanyan Tang.
Cell Death and Disease | 2013
Qipan Deng; Xinfang Yu; Lanbo Xiao; Zhe Yu Hu; Xiangjian Luo; Yongguang Tao; Lifang Yang; Xuejiao Liu; Hanyong Chen; Zhihui Ding; T Feng; Yanyan Tang; Xinxian Weng; Jinghe Gao; Wei Yi; Ann M. Bode; Zigang Dong; Jiankang Liu; Ya Cao
Many natural compounds derived from plants or microbes show promising potential for anticancer treatment, but few have been found to target energy-relevant regulators. In this study, we report that neoalbaconol (NA), a novel small-molecular compound isolated from the fungus, Albatrellus confluens, could target 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibit its downstream phosphoinositide-3 kinase (PI3-K)/Akt-hexokinase 2 (HK2) pathway, which eventually resulted in energy depletion. By targeting PDK1, NA reduced the consumption of glucose and ATP generation, activated autophagy and caused apoptotic and necroptotic death of cancer cells through independent pathway. Necroptosis was remarkably induced, which was confirmed by several necroptosis-specific markers: the activation of autophagy, presence of necrotic morphology, increase of receptor-interacting protein 1 (RIP1)/RIP3 colocalization and interaction and rescued by necroptosis inhibitor necrostatin-1. The possibility that Akt overexpression reversed the NA-induced energy crisis confirmed the importance of the PDK1-Akt-energy pathway in NA-mediated cell death. Moreover, NA shows the capability to inhibit PI3-K/Akt signaling and suppress tumor growth in the nasopharyngeal carcinoma (NPC) nude mouse model. These results supported the feasibility of NA in anticancer treatments.
Molecular Cancer | 2017
Yanyan Tang; Wang J; Yu Lian; Chunmei Fan; Ping Zhang; Yingfen Wu; Li X; Fang Xiong; Xiaoling Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng
Chromatin remodeling controls gene expression and signaling pathway activation, and aberrant chromatin structure and gene dysregulation are primary characteristics of human cancer progression. Recent reports have shown that long non-coding RNAs (lncRNAs) are tightly associated with chromatin remodeling. In this review, we focused on important chromatin remodelers called the switching defective/sucrose nonfermenting (SWI/SNF) complexes, which use the energy of ATP hydrolysis to control gene transcription by altering chromatin structure. We summarize a link between lncRNAs and the SWI/SNF complexes and their role in chromatin remodeling and gene expression regulation in cancer, thereby providing systematic information and a better understanding of carcinogenesis.
Journal of Cancer | 2017
Jianjun Yu; Yan Liu; Can Guo; Shanshan Zhang; Zhaojian Gong; Yanyan Tang; Liting Yang; Yi He; Yu Lian; Li X; Hao Deng; Qianjin Liao; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong; Xinming Yang
Altered expression of long non-coding RNAs (lncRNAs) associated with human carcinogenesis and might be used as diagnosis and prognosis biomarkers. However, the expression of lncRNAs in tongue squamous cell carcinoma (TSCC) and their relevance on the diagnosis, progression and prognosis of TSCC have not been thoroughly elucidated. To discover novel TSCC-related lncRNAs, we analyzed the lncRNA expression patterns in two sets of previously published TSCC gene expression profile data (GSE30784 and GSE9844), and found that long intergenic non-coding RNA 152 (LINC00152) was significantly upregulated in TSCC samples. We then detected LINC00152 expression in two other cohorts of TSCC samples. Quantitative Real time PCR (qRT-PCR) results indicated that LINC00152 was highly expressed in 15 primary TSCC biopsies when compared with 14 adjacent non-tumor tongue squamous cell epithelium samples. The expression of LINC00152 was also measured in 182 paraffin-embedded human TSCC tissues by in situ hybridization, increased expression of LINC00152 was significantly correlated with TSCC progression, such as T stage (p = 0.009), N stage (p = 0.036), TNM stage (p = 0.017), and associated with relapse (p < 0.001), and invasion (p < 0.001). Kaplan-Meier analysis demonstrated that increased LINC00152 expression contributed to both poor overall survival (p = 0.006) and disease-free survival (p = 0.007) of TSCC patients. These findings suggest that LINC00152 might serve as a potential biomarker for early detection and prognosis prediction of TSCC.
Oncotarget | 2017
Yanyan Tang; Yi He; Lei Shi; Liting Yang; Wang J; Yu Lian; Chunmei Fan; Ping Zhang; Can Guo; Shanshan Zhang; Zhaojian Gong; Li X; Fang Xiong; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng
Nasopharyngeal carcinoma (NPC) carries a high potential for metastasis and immune escape, with a great risk of relapse after primary treatment. Through analysis of whole genome expression profiling data in NPC samples, we found that the expression of a long non-coding RNA (lncRNA), actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), is significantly correlated with the immune escape marker programmed death 1 (PD-1). We therefore assessed the expression of AFAP1-AS1 and PD-1 in a cohort of 96 paraffin-embedded NPC samples and confirmed that AFAP1-AS1 and PD-1 are co-expressed in infiltrating lymphocytes in NPC tissue. Moreover, patients with high expression of AFAP1-AS1 or PD-1 in infiltrating lymphocytes were more prone to distant metastasis, and NPC patients with positive expression of both AFAP1-AS1 and PD-1 had the poorest prognosis. This study suggests that AFAP1-AS1 and PD-1 may be potential therapeutic targets in NPC and that patients with co-expression of AFAP1-AS1 and PD-1 may be ideal candidates for future clinical trials of anti-PD-1 immune therapy.
Oncotarget | 2017
Jianjun Yu; Yan Liu; Zhaojian Gong; Shanshan Zhang; Can Guo; Li X; Yanyan Tang; Liting Yang; Yi He; Fang Wei; Yumin Wang; Qianjin Liao; Wenling Zhang; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng
Long non-coding RNAs (lncRNAs) associated with the tumorigenesis of human cancers. However, the relevance of lncRNAs in tongue squamous cell carcinoma (TSCC) is still unclear. To discover novel TSCC-related lncRNAs, we analyzed the lncRNA expression patterns in two sets of TSCC gene expression profile data, and found that long intergenic non-coding RNA 673 (LINC00673) was significantly upregulated in TSCC samples. Then we examined LINC00673 expression in 202 TSCC tissue specimens, LINC00673 is highly expressed in a significant proportion of human TSCC biopsies and correlates with poor prognosis. Knockdown LINC00673 significantly inhibited the cell invasion and migration capability in TSCC cells. Our findings suggest that LINC00673 may play an essential role in TSCC progression and might serve as a potential biomarker for early detection and prognosis prediction of TSCC.
Oncotarget | 2018
Liting Yang; Yanyan Tang; Fang Xiong; Yi He; Fang Wei; Shanshan Zhang; Can Guo; Bo Xiang; Ming Zhou; Ni Xie; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng
Cancer is one of the leading causes of death worldwide, and metastasis is a crucial characteristic of malignancy. Recent studies have shown that lncRNAs play an important role in regulating cancer metastasis through various molecular mechanisms. We briefly summarize four known molecular functions of lncRNAs, including their role as a signal, decoy, guide and scaffold. No matter which pattern lncRNAs follow to carry out their functions, the proteins that lncRNAs bind to are important for them to exhibit their gene-regulating properties. We further illustrate that lncRNAs regulate the localization, stabilization or modification of their binding proteins to realize the binding role of lncRNAs. In this review, we focus on the interactions between lncRNAs and their binding proteins; moreover, we focus on the mechanisms of the collaborative work of lncRNAs and their binding proteins in cancer metastasis, thus evaluating the potential of lncRNAs as prospective novel therapeutic targets in cancer.
Cell Death and Disease | 2018
Yi He; Yizhou Jing; Fang Wei; Yanyan Tang; Liting Yang; Jia Luo; Pei Yang; Qianxi Ni; Jinmeng Pang; Qianjin Liao; Fang Xiong; Can Guo; Bo Xiang; Xiaoling Li; Ming Zhou; Yong Li; Wei Xiong; Zhaoyang Zeng; Guiyuan Li
The long non-coding RNA, plasmacytoma variant translocation 1 (PVT1), is highly expressed in a variety of tumors, and is believed to be a potential oncogene. However, the role and mechanism of action of PVT1 in the carcinogenesis and progression of nasopharyngeal carcinomas (NPCs) remains unclear. In this study, for the first time, we have discovered that PVT1 shows higher expression in NPCs than in normal nasopharyngeal epithelial tissue, and patients with NPCs who show higher expression of PVT1 have worse progression-free and overall survivals. Additionally, we observed that the proliferation of NPC cells decreased, and their rate of apoptosis increased; these results indicated that the knockdown of PVT1 expression in the NPC cells induced radiosensitivity. Further, we have shown that the knockdown of PVT1 expression can induce apoptosis in the NPC cells by influencing the DNA damage repair pathway after radiotherapy. In general, our study shows that PVT1 may be a novel biomarker for prognosis and a new target for the treatment of NPCs. Additionally, targeting PVT1 may be a potential strategy for the clinical management of NPC and for the improvement of the curative effect of radiation in NPCs.
Journal of Cancer | 2017
Liting Yang; Yanyan Tang; Yi He; Yumin Wang; Yu Lian; Fang Xiong; Lei Shi; Shanshan Zhang; Zhaojian Gong; Yujuan Zhou; Qianjin Liao; Ming Zhou; Xiaoling Li; Wei Xiong; Yong Li; Guiyuan Li; Zhaoyang Zeng; Can Guo
Recent studies demonstrated that long non-coding RNAs (lncRNAs) deregulated in many cancer tissues including nasopharyngeal carcinoma (NPC) and had critical roles in cancer progression and metastasis. In this study, we aimed to assess a lncRNA LINC01420 expression in NPC and explore its role in NPC pathogenesis. Our research revealed that the expression level of LINC01420 in NPC tissues were higher than nasopharyngeal epithelial (NPE) tissues. Moreover, NPC patients with high LINC01420 expression level showed poor overall survival. Knockdown LINC01420 inhibited NPC cell migration and invasion in vitro. In summary, LINC01420 may play a critical role in NPC progression and may serve as a potential prognostic biomarker in NPC patients.
Molecular Cancer | 2018
Yanyan Tang; Yi He; Ping Zhang; Jinpeng Wang; Chunmei Fan; Liting Yang; Fang Xiong; Shanshan Zhang; Zhaojian Gong; Shaolin Nie; Qianjin Liao; Li X; Xiaoling Li; Yong Li; Guiyuan Li; Zhaoyang Zeng; Wei Xiong; Can Guo
Some of the key steps in cancer metastasis are the migration and invasion of tumor cells; these processes require rearrangement of the cytoskeleton. Actin filaments, microtubules, and intermediate filaments involved in the formation of cytoskeletal structures, such as stress fibers and pseudopodia, promote the invasion and metastasis of tumor cells. Therefore, it is important to explore the mechanisms underlying cytoskeletal regulation. The ras homolog family (Rho) and Rho-associated coiled-coil containing protein serine/threonine kinase (ROCK) signaling pathway is involved in the regulation of the cytoskeleton. Moreover, long noncoding RNAs (lncRNAs) have essential roles in tumor migration and guide gene regulation during cancer progression. LncRNAs can regulate the cytoskeleton directly or may influence the cytoskeleton via Rho/ROCK signaling during tumor migration. In this review, we focus on the regulatory association between lncRNAs and the cytoskeleton and discuss the pathways and mechanisms involved in the regulation of cancer metastasis.
Oncotarget | 2015
Wang J; Yanyan Tang; Chunmei Fan; Can Guo; Yanhong Zhou; Zheng Li; Xiaoling Li; Yong Li; Guiyuan Li; Wei Xiong; Zhaoyang Zeng; Fang Xiong
An increasing number of studies has confirmed that many cells can secrete vesicles or exosomes in eukaryotes, which contain important nucleic acids, proteins and lipids and play important roles in cell communication and tumor metastasis. This paper summarizes the comprehensive function of exosomal non-coding RNAs. Although some studies have shown that exosomes mediate tumor signal transduction, the functional mechanism of the tumor metastasis remains to be elucidated. In this paper, we reviewed the role of exosomal non-coding RNAs in mediating cancer metastasis in the tumor microenvironment to provide new ideas for the study of tumor pathophysiology.