Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukari Okano is active.

Publication


Featured researches published by Yukari Okano.


Molecular Plant-microbe Interactions | 2010

Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways.

Ken Komatsu; Masayoshi Hashimoto; Johji Ozeki; Yasuyuki Yamaji; Kensaku Maejima; Hiroko Senshu; Misako Himeno; Yukari Okano; Satoshi Kagiwada; Shigetou Namba

Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.


The Plant Cell | 2012

Lectin-Mediated Resistance Impairs Plant Virus Infection at the Cellular Level

Yasuyuki Yamaji; Kensaku Maejima; Ken Komatsu; Takuya Shiraishi; Yukari Okano; Misako Himeno; Kyoko Sugawara; Yutaro Neriya; Nami Minato; Chihiro Miura; Masayoshi Hashimoto; Shigetou Namba

This work identifies jacalin-type lectin that is responsible for resistance to multiple plant viruses belonging to the genus Potexvirus. The isolation and characterization of this lectin sheds light on a novel resistance machinery to plant viruses. Plants possess a multilayered defense response, known as plant innate immunity, to infection by a wide variety of pathogens. Lectins, sugar binding proteins, play essential roles in the innate immunity of animal cells, but the role of lectins in plant defense is not clear. This study analyzed the resistance of certain Arabidopsis thaliana ecotypes to a potexvirus, plantago asiatica mosaic virus (PlAMV). Map-based positional cloning revealed that the lectin gene JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1) is responsible for the resistance. JAX1-mediated resistance did not show the properties of conventional resistance (R) protein–mediated resistance and was independent of plant defense hormone signaling. Heterologous expression of JAX1 in Nicotiana benthamiana showed that JAX1 interferes with infection by other tested potexviruses but not with plant viruses from different genera, indicating the broad but specific resistance to potexviruses conferred by JAX1. In contrast with the lectin gene RESTRICTED TEV MOVEMENT1, which inhibits the systemic movement of potyviruses, which are distantly related to potexviruses, JAX1 impairs the accumulation of PlAMV RNA at the cellular level. The existence of lectin genes that show a variety of levels of virus resistance, their targets, and their properties, which are distinct from those of known R genes, suggests the generality of lectin-mediated resistance in plant innate immunity.


The Plant Cell | 2014

In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor

Yukari Okano; Hiroko Senshu; Masayoshi Hashimoto; Yutaro Neriya; Osamu Netsu; Nami Minato; Tetsuya Yoshida; Kensaku Maejima; Kenro Oshima; Ken Komatsu; Yasuyuki Yamaji; Shigetou Namba

This work reports the detailed molecular function of TGBp1, a suppressor of RNA silencing encoded by a potexvirus. TGBp1 interacts with SGS3 and RDR6 and aggregates SGS3/RDR6 bodies in the cytoplasm, thereby inhibiting dsRNA synthesis. Thus, this work sheds new light on the dsRNA synthesis–mediated secondary siRNA pathway as another general target of viral suppressors of RNA silencing. RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs.


Molecular Plant-microbe Interactions | 2011

A Necrosis-Inducing Elicitor Domain Encoded by Both Symptomatic and Asymptomatic Plantago asiatica mosaic virus Isolates, Whose Expression Is Modulated by Virus Replication

Ken Komatsu; Masayoshi Hashimoto; Kensaku Maejima; Takuya Shiraishi; Yutaro Neriya; Chihiro Miura; Nami Minato; Yukari Okano; Kyoko Sugawara; Yasuyuki Yamaji; Shigetou Namba

Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.


BMC Plant Biology | 2012

Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in Nicotiana benthamiana

Masayoshi Hashimoto; Ken Komatsu; Kensaku Maejima; Yukari Okano; Takuya Shiraishi; Kazuya Ishikawa; Yusuke Takinami; Yasuyuki Yamaji; Shigetou Namba

BackgroundThe mitogen-activated protein kinase (MAPK) cascade is an evolutionarily ancient mechanism of signal transduction found in eukaryotic cells. In plants, MAPK cascades are associated with responses to various abiotic and biotic stresses such as plant pathogens. MAPK cascades function through sequential phosphorylation: MAPK kinase kinases (MAPKKKs) phosphorylate MAPK kinases (MAPKKs), and phosphorylated MAPKKs phosphorylate MAPKs. Of these three types of kinase, the MAPKKKs exhibit the most divergence in the plant genome. Their great diversity is assumed to allow MAPKKKs to regulate many specific signaling pathways in plants despite the relatively limited number of MAPKKs and MAPKs. Although some plant MAPKKKs, including the MAPKKKα of Nicotiana benthamiana (NbMAPKKKα), are known to play crucial roles in plant defense responses, the functional relationship among MAPKKK genes is poorly understood. Here, we performed a comparative functional analysis of MAPKKKs to investigate the signaling pathway leading to the defense response.ResultsWe cloned three novel MAPKKK genes from N. benthamiana: NbMAPKKKβ, NbMAPKKKγ, and NbMAPKKKε2. Transient overexpression of full-length NbMAPKKKβ or NbMAPKKKγ or their kinase domains in N. benthamiana leaves induced hypersensitive response (HR)-like cell death associated with hydrogen peroxide production. This activity was dependent on the kinase activity of the overexpressed MAPKKK. In addition, virus-induced silencing of NbMAPKKKβ or NbMAPKKKγ expression significantly suppressed the induction of programmed cell death (PCD) by viral infection. Furthermore, in epistasis analysis of the functional relationships among NbMAPKKKβ, NbMAPKKKγ, and NbMAPKKKα (previously shown to be involved in plant defense responses) conducted by combining transient overexpression analysis and virus-induced gene silencing, silencing of NbMAPKKKα suppressed cell death induced by the overexpression of the NbMAPKKKβ kinase domain or of NbMAPKKKγ, but silencing of NbMAPKKKβ failed to suppress cell death induced by the overexpression of NbMAPKKKα or NbMAPKKKγ. Silencing of NbMAPKKKγ suppressed cell death induced by the NbMAPKKKβ kinase domain but not that induced by NbMAPKKKα.ConclusionsThese results demonstrate that in addition to NbMAPKKKα, NbMAPKKKβ and NbMAPKKKγ also function as positive regulators of PCD. Furthermore, these three MAPKKKs form a linear signaling pathway leading to PCD; this pathway proceeds from NbMAPKKKβ to NbMAPKKKγ to NbMAPKKKα.


Acta Oncologica | 2010

Patient setup error and day-to-day esophageal motion error analyzed by cone-beam computed tomography in radiation therapy.

Hideomi Yamashita; Akihiro Haga; Yayoi K. Hayakawa; Kae Okuma; Kiyoshi Yoda; Yukari Okano; Kenichiro Tanaka; Toshikazu Imae; Kuni Ohtomo; Keiichi Nakagawa

Abstract Little has been reported on the errors of setup and daily organ motion that occur during radiation therapy (RT) for esophageal cancer. The purpose of this paper was to determine the margins of esophageal motion during RT. Methods and materials. The shift of the esophagus was analyzed in 20 consecutive patients treated with RT for esophageal cancer from November 2007. CT images for RT planning were used as the primary image series. Computed tomography (CT) images were acquired using an Elekta Synergy System, equipped with a kilovoltage-based cone-beam CT (CBCT) unit. The subsequent CBCT image series used for daily RT setup were compared with the primary image series to analyze esophageal motion. CBCT was performed before treatment sessions a total of 10 times in each patient twice a week. The outer esophageal wall was contoured on the CBCT images of all 200 sets. Results. In the 200 sets of CBCT images, the mean (absolute) ± standard deviation (SD) of setup errors were 2 +/− 2 mm (max, 8 mm) in the lateral direction, 4 +/− 3 mm (max, 11 mm) in the longitudinal direction, and 4 +/− 3 mm (max, 13 mm) in the vertical direction. Additionally, the mean ± SD values of daily esophageal motion comparing the CBCT with RT planning CT were 5 +/− 3 mm (max, 15 mm) in the lateral direction and 5 +/− 3 mm (max, 15 mm) in the vertical direction. Conclusions. Our data support the use of target margins (between the clinical target volume and planning target volume) of 9 mm for day-to-day esophageal motion and 8 mm for patient setup in all directions, respectively.


Journal of General Virology | 2013

Fig mosaic emaravirus p4 protein is involved in cell-to-cell movement.

Kazuya Ishikawa; Kensaku Maejima; Ken Komatsu; Osamu Netsu; Takuya Keima; Takuya Shiraishi; Yukari Okano; Masayoshi Hashimoto; Yasuyuki Yamaji; Shigetou Namba

Fig mosaic virus (FMV), a member of the newly formed genus Emaravirus, is a segmented negative-strand RNA virus. Each of the six genomic FMV segments contains a single ORF: that of RNA4 encodes the protein p4. FMV-p4 is presumed to be the movement protein (MP) of the virus; however, direct experimental evidence for this is lacking. We assessed the intercellular distribution of FMV-p4 in plant cells by confocal laser scanning microscopy and we found that FMV-p4 was localized to plasmodesmata and to the plasma membrane accompanied by tubule-like structures. A series of experiments designed to examine the movement functions revealed that FMV-p4 has the capacity to complement viral cell-to-cell movement, prompt GFP diffusion between cells, and spread by itself to neighbouring cells. Altogether, our findings demonstrated that FMV-p4 shares several properties with other viral MPs and plays an important role in cell-to-cell movement.


PLOS ONE | 2011

New Detection Systems of Bacteria Using Highly Selective Media Designed by SMART: Selective Medium-Design Algorithm Restricted by Two Constraints

Takeshi Kawanishi; Takuya Shiraishi; Yukari Okano; Kyoko Sugawara; Masayoshi Hashimoto; Kensaku Maejima; Ken Komatsu; Shigeyuki Kakizawa; Yasuyuki Yamaji; Hiroshi Hamamoto; Kenro Oshima; Shigetou Namba

Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.


Molecular Plant-microbe Interactions | 2015

Cell Death Triggered by a Putative Amphipathic Helix of Radish mosaic virus Helicase Protein Is Tightly Correlated With Host Membrane Modification

Masayoshi Hashimoto; Ken Komatsu; Ryo Iwai; Takuya Keima; Kensaku Maejima; Takuya Shiraishi; Kazuya Ishikawa; Tetsuya Yoshida; Yugo Kitazawa; Yukari Okano; Yasuyuki Yamaji; Shigetou Namba

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix-induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death-inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


Archives of Virology | 2014

Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1

Nami Minato; Ken Komatsu; Yukari Okano; Kensaku Maejima; Johji Ozeki; Hiroko Senshu; Shuichiro Takahashi; Yasuyuki Yamaji; Shigetou Namba

Plant virus expression vectors provide a powerful tool for basic research as well as for practical applications. Here, we report the construction of an expression vector based on plantago asiatica mosaic virus (PlAMV), a member of the genus Potexvirus. Modification of a vector to enhance the expression of a foreign gene, combined with the use of the foot-and-mouth disease virus 2A peptide, allowed efficient expression of the foreign gene in two model plant species, Arabidopsis thaliana and Nicotiana benthamiana. Comparison with the widely used potato virus X (PVX) vector demonstrated that the PlAMV vector retains an inserted foreign gene for a longer period than PVX. Moreover, our results showed that the GFP expression construct PlAMV-GFP exhibits stronger RNA silencing suppression activity than PVX-GFP, which is likely to contribute to the stability of the PlAMV vector.

Collaboration


Dive into the Yukari Okano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge