Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying Piao is active.

Publication


Featured researches published by Ying Piao.


Biochimica et Biophysica Acta | 2012

Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells.

Ying Piao; Hyo Geun Kim; Myung Sook Oh; Youngmi Kim Pak

BACKGROUND Mitochondrial dysfunction is a prominent feature of neurodegenerative diseases including Parkinsons disease (PD), in which insulin signaling pathway may also be implicated because 50-80% of PD patients exhibited metabolic syndrome and insulin resistance. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite, 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPP(+)), inhibit complex I in mitochondrial respiratory chain and are used widely to construct the PD models. But the precise molecular link between mitochondrial damage and insulin signaling remains unclear. METHODS AND RESULTS Using cell-based mitochondrial activity profiling system, we systemically demonstrated that MPP(+) suppressed mitochondrial activity and mitochondrial gene expressions mediated by nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM) in SH-SY5Y cells. MPP(+) fragmented mitochondrial networks and repressed phosphorylation of AKT. Similarly, the expressions of mitochondrial genes and tyrosine hydroxylase and AKT phosphorylation were reduced in substantia nigra and striatum of MPTP-injected mice. Transient transfection of TFAM, NRF-1, or myr-AKT reversed all aspects of the MPP(+)-mediated changes. CONCLUSIONS Mitochondrial activation by TFAM, NRF-1, and myr-AKT abrogated MPP(+)-mediated damages on mitochondria and insulin signaling, leading to recovery of nigrostriatal neurodegeneration. GENERAL SIGNIFICANCE We suggest that TFAM, NRF-1, and AKT may be the critical points of therapeutic intervention for PD. This article is part of a Special Issue entitled Biochemistry of Mitochondria.


Journal of Immunology | 2011

Ethyl Pyruvate Rescues Nigrostriatal Dopaminergic Neurons by Regulating Glial Activation in a Mouse Model of Parkinson’s Disease

Sue H. Huh; Young Chul Chung; Ying Piao; Min Y. Jin; Hyo Jin Son; Nam Soo Yoon; Joo Y. Hong; Youngmi Kim Pak; Yoon Sun Kim; Jong K. Hong; Onyou Hwang; Byung Kwan Jin

This study examined whether ethyl pyruvate (EP) promotes the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. MPTP induced degeneration of nigrostriatal DA neurons and glial activation as visualized by tyrosine hydroxylase, macrophage Ag complex-1, and/or glial fibrillary acidic protein immunoreactivity. Western blotting and immunohistochemistry showed activation of microglial NADPH oxidase and astroglial myeloperoxidase (MPO) and subsequent reactive oxygen species/reactive nitrogen species production and oxidative DNA damage in the MPTP-treated substantia nigra. Treatment with EP prevented degeneration of nigrostriatal DA neurons, increased striatal dopamine levels, and improved motor function. This neuroprotection afforded by EP was associated with the suppression of astroglial MPO expression, NADPH oxidase-, and/or inducible NO synthase-derived reactive oxygen species/reactive nitrogen species production by activated microglia. Interestingly, EP was found to protect DA neurons from 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia but not in neuron-enriched mesencephalic cultures devoid of microglia. The present findings show that EP may inhibit glial-mediated oxidative stress, suggesting that EP may have therapeutic value in the treatment of aspects of Parkinson’s disease related to glia-derived oxidative damage.


Biochimica et Biophysica Acta | 2010

Mitochondrial dysfunction enhances the migration of vascular smooth muscles cells via suppression of Akt phosphorylation

Sun Young Ahn; Yon-Sik Choi; Hyun-Jung Koo; Jae Hoon Jeong; Wook Park; Minseok Kim; Ying Piao; Youngmi Kim Pak

BACKGROUND Atherosclerosis is one of the major complications of diabetes, which may result from insulin resistance via mitochondrial dysfunction. Although a strong association between insulin resistance and cardiovascular disease has been suggested, it is not clear yet whether stress-inducing factors damage mitochondria and insulin signaling pathway in cardiovascular tissues. METHODS We investigated whether stress-induced mitochondrial dysfunction might alter the insulin/Akt signaling pathway in A10 rat vascular smooth muscle cells (VSMC). RESULTS The treatment of oxidized low density lipoprotein (oxLDL) decreased ATP contents, mitochondrial respiration activity, mRNA expressions of OXPHOS subunits and IRS-1/2 and insulin-mediated phosphorylations of Akt and AMP-activated protein kinase (AMPK). Similarly, dideoxycytidine (ddC), the mtDNA replication inhibitor, or rotenone, OXPHOS complex I inhibitor, inhibited the insulin-mediated pAkt while increased pAMPK regardless of insulin. Reciprocally, an inhibitor of Akt, triciribine (TCN), decreased cellular ATP contents. Overexpression of Akt dominant positive reversed the oxLDL- or ddC-mediated ATP decrease but AMPK activator did not. Akt activation also normalized the aberrant VSMC migration induced by ddC. CONCLUSIONS Defective insulin signaling and mitochondrial function may collectively contribute to developing cardiovascular disease. GENERAL SIGNIFICANCE Akt may be a possible therapeutic target for treating insulin resistance-associated atherosclerosis.


Food and Chemical Toxicology | 2014

Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson’s disease

Hyo Geun Kim; Gunhyuk Park; Ying Piao; Min Seo Kang; Youngmi Kim Pak; Seon-Pyo Hong; Myung Sook Oh

Parkinsons disease (PD) is generally characterized by the progressive loss of dopaminergic neurons projecting from the substantia nigra pars compacta (SNpc) to the striatum that results in movement dysfunction, but also entails mitochondrial dysfunction. The purpose of this study is to evaluate the protective effects of Moutan Cortex Radicis (MCE, Moutan peony) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like symptoms and to elucidate the underlying mechanisms of action, with a focus on mitochondrial function. In a rat primary mesencephalic culture system, MCE significantly protected dopaminergic neurons from the neurotoxic effects of 1-methyl-4-phenylpyridinium (MPP(+)), an active form of MPTP. Additionally, in a subacute mouse model of MPTP-induced PD, MCE resulted in enhanced recovery from PD-like motor symptoms, including increased locomotor activity and reduced bradykinesia. MCE increased dopamine availability and protected against MPTP-induced dopaminergic neuronal damage. Moreover, MCE inhibited MPTP-induced mitochondrial dysfunction and resulted in increased expression of phosphorylated Akt, ND9, mitochondrial transcription factor A, and H2AX in the SNpc. Mitochondria-mediated apoptosis was also inhibited, via the regulation of B-cell lymphoma family proteins and the inhibition of cytochrome C release and caspase-3 activation. These results indicate that MCE has neuroprotective effects in PD models and may be useful for preventing or treating PD.


Neurosignals | 2012

Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells.

Hyun-Jung Koo; Ying Piao; Youngmi Kim Pak

Endoplasmic reticulum (ER) and mitochondrial stress are considered causal factors that induce neurodegenerative diseases. However, the relationship between these stresses remains poorly understood. To investigate the molecular mechanism underlying crosstalk between the ER and mitochondria in neurodegeneration, we treated SH-SY5Y human neuroblastoma cells with thapsigargin and tunicamycin, two inducers of ER stress, and atrazine, a promoter of mitochondrial stress. Each pharmacological agent caused mitochondrial dysfunction, which was characterized by reduced intracellular ATP, mitochondrial membrane potential, and endogenous cellular respiration as well as an augmentation of oxidative stress. Oligonucleotide microarray analysis followed by semiquantitative RT-PCR validation assays revealed that thapsigargin and tunicamycin downregulated the expression of most mitochondria-related genes in a manner similar to that induced by atrazine. In contrast, atrazine did not alter the expression of markers of ER stress. Three-dimensional principal component analysis showed that the gene expression profile produced by atrazine treatment was distinct from that generated by ER stress. However, all three agents impaired insulin receptor substrate-1 and Akt phosphorylation in the insulin signaling pathway. Ectopic overexpression of mitochondrial transcription factor A reversed the effects of thapsigargin on mitochondria and Akt signaling. We conclude that ER stress induces neuronal cell death through common perturbation of mitochondrial function and Akt signaling.


Journal of Ethnopharmacology | 2015

Ethanol extract of Bupleurum falcatum and saikosaponins inhibit neuroinflammation via inhibition of NF-κB

Wook Park; Sora Kang; Ying Piao; Christine Jeehye Pak; Myung Sook Oh; Jinwoong Kim; Min Seo Kang; Youngmi Kim Pak

ETHNOPHARMACOLOGICAL RELEVANCE The root of Bupleurum falcatum L. (BF) has been used in traditional Korean and Chinese medicines for over 2000 years to treat infections, fever, and chronic liver diseases. Among the many active compounds in BF ethanol extract (BFE), saikosaponins exert pharmacological activities including anti-inflammatory effects. Activated microglial cells release a variety of pro-inflammatory substances, leading to neuronal cell death and neurodegenerative diseases such as Alzheimers disease and Parkinsons disease. The aim of the present study was to investigate the mechanism of the anti-neuroinflammatory effects of BFE using lipopolysaccharide (LPS)-stimulated microglial cells and LPS-intraperitoneal injected C57BL/6 mice. MATERIALS AND METHODS Dried roots of BF were extracted with 70% ethanol (tenfold volume) on a stirring plate for 24h at room temperature to prepare BFE. Pure saikosaponins (SB3, SB4, and SD) were prepared by solvent extraction and column chromatography fractionation. BV2 murine microglial cells were treated with BFE or saikosaponins for 4h and stimulated with LPS. Generation of nitric oxide (NO), inflammatory cytokines, and reactive oxygen species (ROS) from activated microglial cells were monitored. The effects of BFE on NF-κB activation were determined using RT-PCR, reporter assay, and immunostaining. The in vivo effects of BFE were also assessed by immunohistochemical staining of tissue sections from LPS-injected mouse brains. RESULTS Treatment with BFE or saikosaponins dose-dependently attenuated LPS-induced production of NO, iNOS mRNA, and ROS by 30-50%. They reduced LPS-mediated increases in the mRNA levels of IL-6, IL-1β, and TNF-α by approximately 30-70% without affecting cell viability, and decreased LPS-mediated NF-κB activity via reducing p65/RELA mRNA, transcriptional activity, and nuclear localization of NF-κB. BFE also reduced LPS-induced activation of microglia and astrocytes in the hippocampus and substantia nigra of LPS-injected mice. CONCLUSION Our data suggest that BFE may be effective for reducing neuroinflammation-mediated neurodegeneration through suppressing NF-κB-mediated inflammatory pathways.


Archives of Pharmacal Research | 2013

Causal effects of synthetic chemicals on mitochondrial deficits and diabetes pandemic

Wook-Ha Park; Young-Chul Kang; Ying Piao; Daniel Hyungseok Pak; Youngmi Kim Pak

It is generally accepted that mitochondrial deficits cause many common age-associated diseases including type 2 diabetes. However, it has not been understood what causes mitochondrial damages and how to interrupt the development of the diseases in patients. Recent epidemiologic studies demonstrated a positive correlation between serum concentrations of environmental pollutants and insulin resistance/diabetes. Emerging data strongly suggest that some synthetic pollutants disturb the signaling pathway critical for energy homeostasis and insulin action. The synthetic chemicals are possibly involved in pathogenesis of insulin resistance and diabetes as mitochondria-disturbing agents. In this review, we present a molecular scheme to address the contribution of environmental synthetic chemicals to this metabolic catastrophe. Efforts to identify synthetic chemicals with mitochondria-damaging activities may open a new era to develop effective therapeutic interventions against the worldwide-spreading metabolic disorder.


Scientific Reports | 2018

Triple herbal extract DA-9805 exerts a neuroprotective effect via amelioration of mitochondrial damage in experimental models of Parkinson’s disease

Jin Seok Jeong; Ying Piao; Sora Kang; Minuk Son; Young Cheol Kang; Xiao Fei Du; Jayoung Ryu; Young Woong Cho; Hai-Hua Jiang; Myung Sook Oh; Seon-Pyo Hong; Young Jun Oh; Youngmi Kim Pak

Moutan cortex, Angelica Dahurica root, and Bupleurum root are traditional herbal medicines used in Asian countries to treat various diseases caused by oxidative stress or inflammation. Parkinson’s disease (PD) has been associated with mitochondrial dysfunction, but no effective treatment for mitochondrial dysfunction has yet been identified. In this study we investigated the neuroprotective effects of the triple herbal extract DA-9805 in experimental models of PD. DA-9805 was prepared by extracting three dried plant materials (Moutan cortex, Angelica Dahurica root, and Bupleurum root in a 1:1:1 mixture) with 90% ethanol on a stirring plate for 24 h at room temperature and fingerprinted using high-performance liquid chromatography. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP+), which both exert neurotoxic effects on dopaminergic neurons by inhibiting mitochondrial oxidative phosphorylation (OXPHOS) complex I, were used to make experimental models of PD. In MPP+-treated SH-SY5Y cells, DA-9805 ameliorated the suppression of tyrosine hydroxylase expression and mitochondrial damage on OXPHOS complex 1 activity, mitochondrial membrane potential, reactive oxygen species (ROS) generation, and oxygen consumption rate. In the MPTP-induced subacute PD model mice, oral administration of DA-9805 recovered dopamine content as well as bradykinesia, as determined by the rotarod test. DA-9805 protected against neuronal damage in the substantia nigra pars compacta (SNpc) and striatum. In both in vitro and in vivo models of PD, DA-9805 normalized the phosphorylation of AKT at S473 and T308 on the insulin signaling pathway and the expression of mitochondria-related genes. These results demonstrate that the triple herbal extract DA-9805 showed neuroprotective effects via alleviating mitochondria damage in experimental models of PD. We propose that DA-9805 may be a suitable candidate for disease-modifying therapeutics for PD.


Experimental and Molecular Medicine | 2018

Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models

Young Cheol Kang; Minuk Son; Sora Kang; Suyeol Im; Ying Piao; Kwang Suk Lim; Min-Young Song; Kang-Sik Park; Yong-Hee Kim; Youngmi Kim Pak

An excess of reactive oxygen species (ROS) relative to the antioxidant capacity causes oxidative stress, which plays a role in the development of Parkinson’s disease (PD). Because mitochondria are both sites of ROS generation and targets of ROS damage, the delivery of antioxidants to mitochondria might prevent or alleviate PD. To transduce the antioxidant protein human metallothionein 1A (hMT1A) into mitochondria, we computationally designed a cell-penetrating artificial mitochondria-targeting peptide (CAMP). The recombinant CAMP-conjugated hMT1A fusion protein (CAMP-hMT1A) successfully localized to the mitochondria. Treating a cell culture model of PD with CAMP-hMT1A restored tyrosine hydroxylase expression and mitochondrial activity and reduced ROS production. Furthermore, injection of CAMP-hMT1A into the brain of a mouse model of PD rescued movement impairment and dopaminergic neuronal degeneration. CAMP-hMT1A delivery into mitochondria might be therapeutic against PD by alleviating mitochondrial damage, and we predict that CAMP could be used to deliver other cargo proteins to the mitochondria.Parkinson’s disease: restoring mitochondrial function in disease modelsA peptide targeting mitochondria can help deliver an antioxidant protein to mitigate the effects of Parkinson’s disease in cellular and mouse models. Youngmi Pak from Kyung Hee University, Seoul, South Korea, and co-workers engineered bacteria to express the human version of an antioxidant protein called metallothionein 1A fused to a short peptide sequence so that it localizes to mitochondria, the cellular power plants. Once inside the mitochondria, the peptide is removed, leaving the mature antioxidant protein to mop up damaging free radicals, a common problem seen in the cells of patients with Parkinson’s disease, and restore mitochondria to a healthier state. The protein improved mitochondrial function in both a human cell line and in the neurons of mice with a Parkinson’s-like disease, suggesting it might also help patients with this devastating neurological condition.


Archives of Pharmacal Research | 2018

Correction to: Causal effects of synthetic chemicals on mitochondrial deficits and diabetes pandemic

Wook-Ha Park; Young-Chul Kang; Ying Piao; Daniel Hyungseok Pak; Youngmi Kim Pak

Collaboration


Dive into the Ying Piao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge