Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yonggang Zheng is active.

Publication


Featured researches published by Yonggang Zheng.


Developmental Cell | 2008

The TEAD/TEF Family Protein Scalloped Mediates Transcriptional Output of the Hippo Growth-Regulatory Pathway

Shian Wu; Yi Liu; Yonggang Zheng; Jixin Dong; Duojia Pan

The Hippo (Hpo) kinase cascade restricts tissue growth by inactivating the transcriptional coactivator Yorkie (Yki), which regulates the expression of target genes such as the cell death inhibitor diap1 by unknown mechanisms. Here we identify the TEAD/TEF family protein Scalloped (Sd) as a DNA-binding transcription factor that partners with Yki to mediate the transcriptional output of the Hpo growth-regulatory pathway. The diap1 (th) locus harbors a minimal Sd-binding Hpo Responsive Element (HRE) that mediates transcriptional regulation by the Hpo pathway. Sd binds directly to Yki, and a Yki missense mutation that abrogates Sd-Yki binding also inactivates Yki function in vivo. We further demonstrate that sd is required for yki-induced tissue overgrowth and target gene expression, and that sd activity is conserved in its mammalian homolog. Our results uncover a heretofore missing link in the Hpo signaling pathway and provide a glimpse of the molecular events on a Hpo-responsive enhancer element.


Developmental Cell | 2010

The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals.

Nailing Zhang; Haibo Bai; Karen K. David; Jixin Dong; Yonggang Zheng; Jing Cai; Marco Giovannini; Pentao Liu; Robert A. Anders; Duojia Pan

The conserved Hippo signaling pathway regulates organ size in Drosophila and mammals. While a core kinase cascade leading from the protein kinase Hippo (Hpo) (Mst1 and Mst2 in mammals) to the transcription coactivator Yorkie (Yki) (YAP in mammals) has been established, upstream regulators of the Hippo kinase cascade are less well defined, especially in mammals. Using conditional knockout mice, we demonstrate that the Merlin/NF2 tumor suppressor and the YAP oncoprotein function antagonistically to regulate liver development. While inactivation of Yap led to loss of hepatocytes and biliary epithelial cells, inactivation of Nf2 led to hepatocellular carcinoma and bile duct hamartoma. Strikingly, the Nf2-deficient phenotypes in multiple tissues were largely suppressed by heterozygous deletion of Yap, suggesting that YAP is a major effector of Merlin/NF2 in growth regulation. Our studies link Merlin/NF2 to mammalian Hippo signaling and implicate YAP activation as a mediator of pathologies relevant to Neurofibromatosis 2.


Developmental Cell | 2010

Kibra Functions as a Tumor Suppressor Protein that Regulates Hippo Signaling in Conjunction with Merlin and Expanded

Jianzhong Yu; Yonggang Zheng; Jixin Dong; Stephen Klusza; Wu-Min Deng; Duojia Pan

The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. Central to this pathway is a kinase cascade wherein Hippo (Hpo), in complex with Salvador (Sav), phosphorylates and activates Warts (Wts), which in turn phosphorylates and inactivates the Yorkie (Yki) oncoprotein, known as the YAP coactivator in mammalian cells. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are upstream components that regulate Hpo activity through unknown mechanisms. Here we identify Kibra as another upstream component of the Hippo signaling pathway. We show that Kibra functions together with Mer and Ex in a protein complex localized to the apical domain of epithelial cells, and that this protein complex regulates the Hippo kinase cascade via direct binding to Hpo and Sav. These results shed light on the mechanism of Ex and Mer function and implicate Kibra as a potential tumor suppressor with relevance to neurofibromatosis.


Genes & Development | 2010

The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program

Jing Cai; Nailing Zhang; Yonggang Zheng; Roeland F. De Wilde; Anirban Maitra; Duojia Pan

Although a developmental role for Hippo signaling in organ size control is well appreciated, how this pathway functions in tissue regeneration is largely unknown. Here we address this issue using a dextran sodium sulfate (DSS)-induced colonic regeneration model. We find that regenerating crypts express elevated Yes-associated protein (YAP) levels. Inactivation of YAP causes no obvious intestinal defects under normal homeostasis, but severely impairs DSS-induced intestinal regeneration. Conversely, hyperactivation of YAP results in widespread early-onset polyp formation following DSS treatment. Thus, the YAP oncoprotein must be exquisitely controlled in tissue regeneration to allow compensatory proliferation and prevent the intrinsic oncogenic potential of a tissue regeneration program.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded

Chen Ling; Yonggang Zheng; Feng Yin; Jianzhong Yu; Juan Huang; Yang Hong; Shian Wu; Duojia Pan

The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. At the core of the Hippo pathway is a kinase cascade extending from the Hippo (Hpo) tumor suppressor to the Yorkie (Yki) oncoprotein. The Hippo kinase cascade, in turn, is regulated by apical membrane-associated proteins such as the FERM domain proteins Merlin and Expanded (Ex), and the WW- and C2-domain protein Kibra. How these apical proteins are themselves regulated remains poorly understood. Here, we identify the transmembrane protein Crumbs (Crb), a determinant of epithelial apical-basal polarity in Drosophila embryos, as an upstream component of the Hippo pathway in imaginal disk growth control. Loss of Crb leads to tissue overgrowth and target gene expression characteristic of defective Hippo signaling. Crb directly binds to Ex through its juxtamembrane FERM-binding motif (FBM). Loss of Crb or mutation of its FBM leads to mislocalization of Ex to basolateral domain of imaginal disk epithelial cells. These results shed light on the mechanism of Ex regulation and provide a molecular link between apical-basal polarity and tissue growth. Furthermore, our studies implicate Crb as a putative cell surface receptor for Hippo signaling by uncovering a transmembrane protein that directly binds to an apical component of the Hippo pathway.


Cell | 2013

Spatial Organization of Hippo Signaling at the Plasma Membrane Mediated by the Tumor Suppressor Merlin/NF2

Feng Yin; Jianzhong Yu; Yonggang Zheng; Qian Chen; Nailing Zhang; Duojia Pan

Although Merlin/NF2 was discovered two decades ago as a tumor suppressor underlying Neurofibromatosis type II, its precise molecular mechanism remains poorly understood. Recent studies in Drosophila revealed a potential link between Merlin and the Hippo pathway by placing Merlin genetically upstream of the kinase Hpo/Mst. In contrast to the commonly depicted linear model of Merlin functioning through Hpo/Mst, here we show that in both Drosophila and mammals, Merlin promotes downstream Hippo signaling without activating the intrinsic kinase activity of Hpo/Mst. Instead, Merlin directly binds and recruits the effector kinase Wts/Lats to the plasma membrane. Membrane recruitment, in turn, promotes Wts phosphorylation by the Hpo-Sav kinase complex. We further show that disruption of the actin cytoskeleton promotes Merlin-Wts interactions, which implicates Merlin in actin-mediated regulation of Hippo signaling. Our findings elucidate an important molecular function of Merlin and highlight the plasma membrane as a critical subcellular compartment for Hippo signal transduction.


Developmental Cell | 2013

The Hippo Effector Yorkie Controls Normal Tissue Growth by Antagonizing Scalloped-Mediated Default Repression

Laura Koontz; Yi Liu-Chittenden; Feng Yin; Yonggang Zheng; Jianzhong Yu; Bo Huang; Qian Chen; Shian Wu; Duojia Pan

The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sds default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine.


Cell Reports | 2012

Premetazoan Origin of the Hippo Signaling Pathway

Arnau Sebé-Pedrós; Yonggang Zheng; Iñaki Ruiz-Trillo; Duojia Pan

Nonaggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in nonbilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the coactivator Yorkie, and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila melanogaster, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism predating the origin of Metazoa.


Developmental Cell | 2015

Identification of Happyhour/MAP4K as Alternative Hpo/Mst-like Kinases in the Hippo Kinase Cascade.

Yonggang Zheng; Wei Wang; Bo Liu; Hua Deng; Eliza Uster; Duojia Pan

In Drosophila and mammals, the canonical Hippo kinase cascade is mediated by Hpo/Mst acting through the intermediary kinase Wts/Lats to phosphorylate the transcriptional coactivator Yki/YAP/TAZ. Despite recent reports linking Yki/YAP/TAZ activity to the actin cytoskeleton, the underlying mechanisms are poorly understood and/or controversial. Using Drosophila imaginal discs as an in vivo model, we show that Wts, but not Hpo, is genetically indispensable for cytoskeleton-mediated subcellular localization of Yki. Through a systematic screen, we identify the Ste-20 kinase Happyhour (Hppy) and its mammalian counterpart MAP4K1/2/3/5 as an alternative kinase that phosphorylates the hydrophobic motif of Wts/Lats in a similar manner as Hpo/Mst. Consistent with their redundant function as activating kinases of Wts/Lats, combined loss of Hpo/Mst and Hppy/MAP4K abolishes cytoskeleton-mediated regulation of Yki/YAP subcellular localization, as well as YAP cytoplasmic translocation induced by contact inhibition. These Hpo/Mst-like kinases provide an expanded view of the Hippo kinase cascade in development and physiology.


Cell | 2016

Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila

Bo Liu; Yonggang Zheng; Feng Yin; Jianzhong Yu; Neal S. Silverman; Duojia Pan

The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings.

Collaboration


Dive into the Yonggang Zheng's collaboration.

Top Co-Authors

Avatar

Duojia Pan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jianzhong Yu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Feng Yin

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Hua Deng

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jixin Dong

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nailing Zhang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Cai

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge