Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where YongJoo Kim is active.

Publication


Featured researches published by YongJoo Kim.


Journal of the American Chemical Society | 2014

Influence of the Donor Size in D−π–A Organic Dyes for Dye-Sensitized Solar Cells

Jiabao Yang; Paramaguru Ganesan; Joël Teuscher; Thomas Moehl; YongJoo Kim; Chenyi Yi; Pascal Comte; Kai Pei; Thomas W. Holcombe; Mohammad Khaja Nazeeruddin; Jianli Hua; Shaik M. Zakeeruddin; He Tian; Michael Grätzel

We report two new molecularly engineered push-pull dyes, i.e., YA421 and YA422, based on substituted quinoxaline as a π-conjugating linker and bulky-indoline moiety as donor and compared with reported IQ4 dye. Benefitting from increased steric hindrance with the introduction of bis(2,4-dihexyloxy)benzene substitution on the quinoxaline, the electron recombination between redox electrolyte and the TiO2 surface is reduced, especially in redox electrolyte employing Co(II/III) complexes as redox shuttles. It was found that the open circuit photovoltages of IQ4, YA421, and YA422 devices with cobalt-based electrolyte are higher than those with iodide/triiodide electrolyte by 34, 62, and 135 mV, respectively. Moreover, the cells employing graphene nanoplatelets on top of gold spattered film as a counter electrode (CE) show lower charge-transfer resistance compared to platinum as a CE. Consequently, YA422 devices deliver the best power conversion efficiency due to higher fill factor, reaching 10.65% at AM 1.5 simulated sunlight. Electrochemical impedance spectroscopy and transient absorption spectroscopy analysis were performed to understand the electrolyte influence on the device performances with different counter electrode materials and donor structures of donor-π-acceptor dyes. Laser flash photolysis experiments indicate that even though the dye regeneration of YA422 is slower than that of the other two dyes, the slower back electron transfer of YA422 contributes to the higher device performance.


Scientific Reports | 2013

Blue-coloured highly efficient dye-sensitized solar cells by implementing the diketopyrrolopyrrole chromophore.

Jun-Ho Yum; Thomas W. Holcombe; YongJoo Kim; Kasparas Rakstys; Thomas Moehl; Joël Teuscher; Jared H. Delcamp; Mohammed K. Nazeeruddin; Michael Grätzel

The paradigm shift in dye sensitized solar cells (DSCs) – towards donor- π bridge-acceptor (D-π-A) dyes – increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3]3+/2+ redox-shuttle afforded superior performance compared to I3−/I−. Aesthetically, careful molecular engineering of the DPP chromophore yielded the first example of a high-performance blue DSC – a challenge unmet since the inception of this photovoltaic technology: DPP17 yields over 10% power conversion efficiency (PCE) with the [Co(bpy)3]3+/2+ electrolyte at full AM 1.5 G simulated sun light.


ACS Nano | 2015

Soft Patchy Particles of Block Copolymers from Interface-Engineered Emulsions

Kang Hee Ku; YongJoo Kim; Gi-Ra Yi; Yeon Sik Jung; Bumjoon J. Kim

We report a simple and practical method for creating colloidal patchy particles with a variety of three-dimensional shapes via the evaporation-induced assembly of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) in an oil-in-water emulsion. Depending on the particle volume, a series of patchy particles in the shapes of snowmen, dumbbells, triangles, tetrahedra, and raspberry can be prepared, which are then precisely tuned by modulating the interfacial interaction at the particle/water interface using a mixture of two different surfactants. Moreover, for a given interfacial interaction, the stretching penalty of the BCPs in the patchy particles can be systematically controlled by adding P4VP homopolymers, which decreases the number of patches of soft particles from multiple patches to a single patch but increases the size of the patch. Calculations based on the strong segregation theory supported the experimental observation of various soft patchy particles and identified the underlying principles of their formation with tunable 3D structures.


Scientific Reports | 2013

Host-Guest Self-assembly in Block Copolymer Blends

Woon Ik Park; YongJoo Kim; Jae Won Jeong; Kyung Ho Kim; Jung-Keun Yoo; Yoon Hyung Hur; Jong Min Kim; Edwin L. Thomas; Alfredo Alexander-Katz; Yeon Sik Jung

Ultrafine, uniform nanostructures with excellent functionalities can be formed by self-assembly of block copolymer (BCP) thin films. However, extension of their geometric variability is not straightforward due to their limited thin film morphologies. Here, we report that unusual and spontaneous positioning between host and guest BCP microdomains, even in the absence of H-bond linkages, can create hybridized morphologies that cannot be formed from a neat BCP. Our self-consistent field theory (SCFT) simulation results theoretically support that the precise registration of a spherical BCP microdomain (guest, B-b-C) at the center of a perforated lamellar BCP nanostructure (host, A-b-B) can energetically stabilize the blended morphology. As an exemplary application of the hybrid nanotemplate, a nanoring-type Ge2Sb2Te5 (GST) phase-change memory device with an extremely low switching current is demonstrated. These results suggest the possibility of a new pathway to construct more diverse and complex nanostructures using controlled blending of various BCPs.


ACS Nano | 2017

Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology

Jae Man Shin; YongJoo Kim; Hongseok Yun; Gi-Ra Yi; Bumjoon J. Kim

Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.


Journal of Chemical Physics | 2013

Lattice Boltzmann method for multiscale self-consistent field theory simulations of block copolymers

Hsieh Chen; YongJoo Kim; Alfredo Alexander-Katz

A new Lattice Boltzmann (LB) approach is introduced to solve for the block copolymer propagator in polymer field theory. This method bridges two desired properties from different numerical techniques, namely: (i) it is robust and stable as the pseudo-spectral method and (ii) it is flexible and allows for grid refinement and arbitrary boundary conditions. While the LB method is not as accurate as the pseudo-spectral method, full self-consistent field theoretic simulations of block copolymers on graphoepitaxial templates yield essentially indistinguishable results from pseudo-spectral calculations. Furthermore, we were able to achieve speedups of ~100× compared to single CPU core implementations by utilizing graphics processing units. We expect this method to be very useful in multi-scale studies where small length scale details have to be resolved, such as in strongly segregating block copolymer blends or nanoparticle-polymer interfaces.


ACS Applied Materials & Interfaces | 2017

Interfacial Energy-Controlled Top Coats for Gyroid/Cylinder Phase Transitions of Polystyrene-block-polydimethylsiloxane Block Copolymer Thin Films

In Hyu Ryu; YongJoo Kim; Yeon Sik Jung; Jong Sung Lim; C. A. Ross; Jeong Gon Son

Block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can form well-defined sub-10 nm periodic structures and can be used as a template for fabrication of various functional nanostructures. However, the large difference of surface energy between the blocks commonly found in high-χ BCPs makes it challenging to stabilize a useful gyroid morphology in thin film form. Here, we used an interfacial-energy-tailored top-coat on a blended film of a polystyrene-block-polydimethylsiloxane (PS-b-PDMS) BCP and a low-molecular-weight PDMS homopolymer with a hydrophilic end functional group. The top coat consisted of a random mixture of 40% hydrolyzed poly(vinyl acetate)-random-poly(vinly alcohol) (PVA-r-PVAc, PVA40) and PVAc homopolymer. At the optimized top-coat composition, gyroid nanostructures with sub-10 nm strut width were achieved down to ∼125 nm film thickness, which is only 3 times the lattice parameter of the gyroid structure. This is in marked contrast with a mixed morphology of gyroid and cylinders obtained for other compositions of the top coat. Self-consistent field theoretic simulations were used to understand the effect of the interfacial energy between the top coat and BCP/homopolymer blends on the phase transition behavior of the BCP/homopolymer films.


Journal of Chemical Physics | 2011

Phase behavior of symmetric disk-coil macromolecules with stacking interactions

YongJoo Kim; Alfredo Alexander-Katz

We investigate using Monte Carlo simulations in the NPT ensemble the self-assembly of disk-coil macromolecules with stacking interactions. The disk-coil molecules are composed of a planar disk that is covalently bonded to a single coil. In addition to commonly used amphiphilic interactions between the disk and coil portion of the molecules, we employ an attractive interaction between central monomers of the disks, which mimics stacking interactions. This additional force induces a preferential axial packing. The phase diagram of this system is complex and depends crucially on the stacking interactions. In particular, we find a variety of new phases that include for this system an ordered lamellar, ordered perforated lamellar, cylinder and ordered cylinder phases in addition to the disordered, lamellar, perforated lamellar, and crystal phases observed previously [Y. Kim and A. Alexander-Katz, J. Chem. Phys. 132, 174901 (2010)]. The ordered phases show strong tendency of parallel packing of disks. Among them, the ordered cylinder phase exhibits super-aligned structures which could have uses in many organic optoelectronic applications.


Journal of Chemical Physics | 2010

Phase behavior of symmetric disk-coil molecules.

YongJoo Kim; Alfredo Alexander-Katz

We investigate the self-assembly of symmetric disk-coil molecules using Monte Carlo simulations in the NPT ensemble. Our molecules are composed of a planar disk (head) that is covalently bonded to a single coil (tail), and can be regarded as disk-coil copolymers. For this system, we observe a variety of phases depending on the temperature and the effective interactions between the disk and coil regions. In particular, we find a disordered, a lamellar, a perforated lamellar, and a crystal phase. Furthermore, the orientational correlation (or ordering) of the disks within the crystal phase is found to be stronger compared to the pure disk case, which we also explicitly simulate. The enhanced order is due to the confinement imposed by the mesophase formation. Our results are relevant for organic photoactive (typically planar) molecules that are functionalized with alkyl tails to improve their processing properties as well as their long-range order in the solid phase, and can also help to rationalize some biologically observed phases of chlorophyll seen in the photosynthetic apparatus of green bacteria.


Journal of Physical Chemistry C | 2014

Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells

Mine Ince; Jun-Ho Yum; YongJoo Kim; Simon Mathew; Michael Grätzel; Tomás Torres; Mohammad Khaja Nazeeruddin

Collaboration


Dive into the YongJoo Kim's collaboration.

Top Co-Authors

Avatar

Alfredo Alexander-Katz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gi-Ra Yi

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Hsieh Chen

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge