Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiki Yasukochi is active.

Publication


Featured researches published by Yoshiki Yasukochi.


Journal of Heredity | 2009

Genetic Structure of the Asiatic Black Bear in Japan Using Mitochondrial DNA Analysis

Yoshiki Yasukochi; Shin Nishida; Sang-Hoon Han; Toshifumi Kurosaki; Masaaki Yoneda; Hiroko Koike

The genetic structure of the Asiatic black bear (Ursus thibetanus) in Japan was studied to understand the events that occurred during its evolution. The left domain of the mitochondrial control region (about 240 bp) was sequenced, defining 27 haplotypes that consisted of 23 haplotypes from 333 bears in Japan and 22 bears in the Asian continent. The network tree of the control region indicated that the Japanese population formed a distinct clade from the continental population. The phylogeographic analysis of the haplotypes indicated that the Shikoku and Kii Hanto populations had diverged during the initial phase from the ancestral population. After the 3 dominant haplotypes were rapidly distributed throughout Japan in the early stage of the population dispersal, the Japanese population diverged into eastern and western populations. Using the entire mitochondrial cytochrome b sequence, divergence time between the Japanese and the Continental populations suggested that the Japanese population might have colonized into Japan through the land bridge from the Korean Peninsula around 500 ka, which is consistent with paleontological evidence. Our finding that bears in western Japan exhibit lower genetic diversity and higher levels of genetic differentiation than bears in eastern Japan provides a vital contribution to conservation policy for these isolated populations.


Immunogenetics | 2013

Current perspectives on the intensity of natural selection of MHC loci

Yoshiki Yasukochi; Yoko Satta

Polymorphism of genes in the major histocompatibility complex (MHC) is believed to be maintained by balancing selection. However, direct evidence of selection has proven difficult to demonstrate. In 1994, Satta and colleagues estimated the selection intensity of the human MHC (human leukocyte antigen (HLA)) loci; however, at that time the number of HLA sequences was limited. By comparing five different methods, this study demonstrated the best way to calculate the selection coefficient, through a computer simulation study. Since the study, many HLA nucleotide sequences have been made available. Our new analysis takes advantage of these newly available sequences and compares new estimates with those of the previous study. Generally, our new results are consistent with those of the 1994 study. Our results show that, even after 20xa0years of exhaustive sequencing of human HLA, the number of dominant HLA alleles, on which our original estimate of selection intensity depended, appears to be conserved. Indeed, according to the frequency distribution for each HLA allele, most sequences in the database were minor or private alleles; therefore, we conclude that the selection intensities of HLA loci are at most 4.4xa0% even though the HLA is the prominent example on which the natural selection has been operating.


Genome Biology and Evolution | 2015

Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

Yoshiki Yasukochi; Yoko Satta

The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences.


BMC Evolutionary Biology | 2012

MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

Yoshiki Yasukochi; Toshifumi Kurosaki; Masaaki Yoneda; Hiroko Koike; Yoko Satta

BackgroundThe major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations.ResultsAmong 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected.ConclusionsThe low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.


Immunogenetics | 2017

Elucidating the origin of HLA-B*73 allelic lineage: Did modern humans benefit by archaic introgression?

Yoshiki Yasukochi; Jun Ohashi

A previous study reported that some of the human leukocyte antigen (HLA) alleles and haplotypes in present-day humans were acquired by admixture with archaic humans; specifically, an exceptionally diverged HLA-B*73 allele was proposed to be transmitted from Denisovans, although the DNA sequence of HLA-B*73 has not been detected in the Denisovan genome. Here, we argue against the hypothesis that HLA-B*73 introgressed from Denisovans into early modern humans. A phylogenetic analysis revealed that HLA-B*73:01 formed a monophyletic group with a chimpanzee MHC-B allele, strongly suggesting that the HLA-B*73 allelic lineage has been maintained in humans as well as in chimpanzees since the divergence of humans and chimpanzees. The global distribution of HLA-B*73 allele showed that the population frequency of HLA-B*73 in west Asia (0.24xa0%)—a possible site of admixture with Denisovans—is lower than that in Europe (0.72xa0%) and in south Asia (0.69xa0%). Furthermore, HLA-B*73 is not observed in Melanesia even though the Melanesian genome contains the highest proportion of Denisovan ancestry in present-day human populations. Single nucleotide polymorphisms in HLA-A*11-HLA-C*12:02 or HLA-A*11-C*15 haplotypes, one of which was assumed to be transmitted together with HLA-B*73 from Denisovans by the study of Abi-Rached and colleagues, were not differentiated from those in other HLA-A-C haplotypes in modern humans. These results do not support the introgression hypothesis. Thus, we conclude that it is highly likely that HLA-B*73 allelic lineage has been maintained in the direct ancestors of modern humans.


Tissue Antigens | 2015

A limit to the divergent allele advantage model supported by variable pathogen recognition across HLA-DRB1 allele lineages

Q. Lau; Yoshiki Yasukochi; Yoko Satta

Abstract Genetic diversity in human leukocyte antigen (HLA) molecules is thought to have arisen from the co‐evolution between host and pathogen and maintained by balancing selection. Heterozygote advantage is a common proposed scenario for maintaining high levels of diversity in HLA genes, and extending from this, the divergent allele advantage (DAA) model suggests that individuals with more divergent HLA alleles bind and recognize a wider array of antigens. While the DAA model seems biologically suitable for driving HLA diversity, there is likely an upper threshold to the amount of sequence divergence. We used peptide‐binding and pathogen‐recognition capacity of DRB1 alleles as a model to further explore the DAA model; within the DRB1 locus, we examined binding predictions based on two distinct phylogenetic groups (denoted group A and B) previously identified based on non‐peptide‐binding region (PBR) nucleotide sequences. Predictions in this study support that group A allele and group B allele lineages have contrasting binding/recognition capacity, with only the latter supporting the DAA model. Furthermore, computer simulations revealed an inconsistency in the DAA model alone with observed extent of polymorphisms, supporting that the DAA model could only work effectively in combination with other mechanisms. Overall, we support that the mechanisms driving HLA diversity are non‐exclusive. By investigating the relationships among HLA alleles, and pathogens recognized, we can provide further insights into the mechanisms on how humans have adapted to infectious diseases over time.


Malaria Journal | 2015

Genetic evidence for contribution of human dispersal to the genetic diversity of EBA-175 in Plasmodium falciparum

Yoshiki Yasukochi; Izumi Naka; Jintana Patarapotikul; Hathairad Hananantachai; Jun Ohashi

BackgroundThe 175-kDa erythrocyte binding antigen (EBA-175) of Plasmodium falciparum plays a crucial role in merozoite invasion into human erythrocytes. EBA-175 is believed to have been under diversifying selection; however, there have been no studies investigating the effect of dispersal of humans out of Africa on the genetic variation of EBA-175 in P. falciparum.MethodsThe PCR-direct sequencing was performed for a part of the eba-175 gene (regions II and III) using DNA samples obtained from Thai patients infected with P. falciparum. The divergence times for the P. falciparum eba-175 alleles were estimated assuming that P. falciparum/Plasmodium reichenowi divergence occurred 6 million years ago (MYA). To examine the possibility of diversifying selection, nonsynonymous and synonymous substitution rates for Plasmodium species were also estimated.ResultsA total of 32 eba-175 alleles were identified from 131 Thai P. falciparum isolates. Their estimated divergence time was 0.13–0.14xa0MYA, before the exodus of humans from Africa. A phylogenetic tree for a large sequence dataset of P. falciparumeba-175 alleles from across the world showed the presence of a basal Asian-specific cluster for all P. falciparum sequences. A markedly more nonsynonymous substitutions than synonymous substitutions in region II in P. falciparum was also detected, but not within Plasmodium species parasitizing African apes, suggesting that diversifying selection has acted specifically on P. falciparumeba-175.ConclusionsPlasmodium falciparumeba-175 genetic diversity appeared to increase following the exodus of Asian ancestors from Africa. Diversifying selection may have played an important role in the diversification of eba-175 allelic lineages. The present results suggest that the dispersals of humans out of Africa influenced significantly the molecular evolution of P. falciparum EBA-175.


G3: Genes, Genomes, Genetics | 2014

Nonsynonymous substitution rate heterogeneity in the peptide-binding region among different HLA-DRB1 lineages in humans.

Yoshiki Yasukochi; Yoko Satta

An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution.


Journal of Physiological Anthropology | 2014

A human-specific allelic group of the MHC DRB1 gene in primates.

Yoshiki Yasukochi; Yoko Satta

BackgroundDiversity among human leukocyte antigen (HLA) molecules has been maintained by host-pathogen coevolution over a long period of time. Reflecting this diversity, the HLA loci are the most polymorphic in the human genome. One characteristic of HLA diversity is long-term persistence of allelic lineages, which causes trans-species polymorphisms to be shared among closely related species. Modern humans have disseminated across the world after their exodus from Africa, while chimpanzees have remained in Africa since the speciation event between humans and chimpanzees. It is thought that modern humans have recently acquired resistance to novel pathogens outside Africa. In the present study, we investigated HLA alleles that could contribute to this local adaptation in humans and also studied the contribution of natural selection to human evolution by using molecular data.ResultsPhylogenetic analysis of HLA-DRB1 genes identified two major groups, HLA Groups A and B. Group A formed a monophyletic clade distinct from DRB1 alleles in other Catarrhini, suggesting that Group A is a human-specific allelic group. Our estimates of divergence time suggested that seven HLA-DRB1 Group A allelic lineages in humans have been maintained since before the speciation event between humans and chimpanzees, while chimpanzees possess only one DRB1 allelic lineage (Patr-DRB1*03), which is a sister group to Group A. Experimental data showed that some Group A alleles bound to peptides derived from human-specific pathogens. Of the Group A alleles, three exist at high frequencies in several local populations outside Africa.ConclusionsHLA Group A alleles are likely to have been retained in human lineages for a long period of time and have not expanded since the divergence of humans and chimpanzees. On the other hand, most orthologs of HLA Group A alleles may have been lost in the chimpanzee due to differences in selective pressures. The presence of alleles with high frequency outside of Africa suggests these HLA molecules result from the local adaptations of humans. Our study helps elucidate the mechanism by which the human adaptive immune system has coevolved with pathogens over a long period of time.


Journal of Physiological Anthropology | 2018

Association of EGLN1 genetic polymorphisms with SpO2 responses to acute hypobaric hypoxia in a Japanese cohort

Yoshiki Yasukochi; Takayuki Nishimura; Midori Motoi; Shigeki Watanuki

BackgroundRecent studies have explored various genetic and physiological factors related to high-altitude adaptation in highlander populations. However, the effects of single nucleotide polymorphisms (SNPs), influencing such adaptation, on physiological responses to hypobaric hypoxia have not been examined in lowlanders with lowlander ancestry. Thus, we aimed to investigate the association between SNPs around the EGLN1 genomic region, possibly involved in high-altitude adaptation, and physiological changes to hypobaric hypoxia exposure in a cohort of Japanese lowlanders.MethodsPhysiological data were obtained from 46 healthy Japanese male students under different atmospheric pressure conditions (equivalent to sea level and altitudes of 2500 and 4000xa0m). Genotypes of seven SNPs around EGLN1 were determined in all subjects by PCR-direct sequencing or TaqMan SNP genotyping assay.ResultsResults of the association study suggest that percutaneous arterial oxygen saturation (SpO2) responses of individuals with rs12097901 and rs2790859 alleles, whose frequencies are high in highlander populations (HL alleles), may be susceptible to acute hypobaric hypoxia. SpO2 levels of individuals with HL alleles were lower than those of individuals with non-HL alleles. At the same time, the subjects with HL alleles did not appear to have any remarkable hematological or pulmonary features that may counteract the low levels of SpO2. One may hypothesize that the low SpO2 levels in HL allele carriers could be a risk factor for acute mountain sickness in Japanese population.ConclusionsOur findings suggest that rs12097901 and rs2790859 genotypes affect SpO2 responses and may be associated with the susceptibility to acute hypobaric hypoxia in Japanese population.

Collaboration


Dive into the Yoshiki Yasukochi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ichiro Takeuchi

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Motoji Sawabe

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaaki Muramatsu

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge