Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshimi Nakano is active.

Publication


Featured researches published by Yoshimi Nakano.


Plant Physiology | 2010

VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System

Masatoshi Yamaguchi; Nadia Goué; Hisako Igarashi; Misato Ohtani; Yoshimi Nakano; Jennifer C. Mortimer; Nobuyuki Nishikubo; Minoru Kubo; Yoshihiro Katayama; Koichi Kakegawa; Paul Dupree; Taku Demura

We previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation. Here, we report a glucocorticoid-mediated posttranslational induction system of VND6 and VND7. In this system, VND6 or VND7 is expressed as a fused protein with the activation domain of the herpes virus VP16 protein and hormone-binding domain of the animal glucocorticoid receptor, and the proteins activity is induced by treatment with dexamethasone (DEX), a glucocorticoid derivative. Upon DEX treatment, transgenic Arabidopsis (Arabidopsis thaliana) plants carrying the chimeric gene exhibited transdifferentiation of various types of cells into xylem vessel elements, and the plants died. Many genes involved in xylem vessel differentiation, such as secondary wall biosynthesis and programmed cell death, were up-regulated in these plants after DEX treatment. Chemical analysis showed that xylan, a major hemicellulose component of the dicot secondary cell wall, was increased in the transgenic plants after DEX treatment. This induction system worked in poplar (Populus tremula × tremuloides) trees and in suspension cultures of cells from Arabidopsis and tobacco (Nicotiana tabacum); more than 90% of the tobacco BY-2 cells expressing VND7-VP16-GR transdifferentiated into xylem vessel elements after DEX treatment. These data demonstrate that the induction systems controlling VND6 and VND7 activities can be used as powerful tools for understanding xylem cell differentiation.


Science | 2014

Contribution of NAC Transcription Factors to Plant Adaptation to Land

Bo Xu; Misato Ohtani; Masatoshi Yamaguchi; Kiminori Toyooka; Mayumi Wakazaki; Mayuko Sato; Minoru Kubo; Yoshimi Nakano; Ryosuke Sano; Yuji Hiwatashi; Takashi Murata; Tetsuya Kurata; Arata Yoneda; Ko Kato; Mitsuyasu Hasebe; Taku Demura

From Drips to Tubes In the evolutionary transition from aquatic to terrestrial habitats, plants acquired internal systems to transport water and provide structural support. Xu et al. (p. 1505, published online 20 March) studied a family of genes and the cells they control to better understand the innovations required to adapt to dry land. In Arabidopsis, specific transcription factors regulate development of xylem—the plant tissue that transports water. The moss Physcomitrella patens has similar genes, which regulate development of hydroids and stereids, cells specialized in water transport and structural support. The similarity in the genes and their functions suggests the evolutionary origins of land-plant vascular systems. Similarities are revealed in the generation of internal water transport systems in moss and Arabidopsis. The development of cells specialized for water conduction or support is a striking innovation of plants that has enabled them to colonize land. The NAC transcription factors regulate the differentiation of these cells in vascular plants. However, the path by which plants with these cells have evolved from their nonvascular ancestors is unclear. We investigated genes of the moss Physcomitrella patens that encode NAC proteins. Loss-of-function mutants formed abnormal water-conducting and supporting cells, as well as malformed sporophyte cells, and overexpression induced ectopic differentiation of water-conducting–like cells. Our results show conservation of transcriptional regulation and cellular function between moss and Arabidopsis thaliana water-conducting cells. The conserved genetic basis suggests roles for NAC proteins in the adaptation of plants to land.


Frontiers in Plant Science | 2015

NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

Yoshimi Nakano; Masatoshi Yamaguchi; Hitoshi Endo; Nur Ardiyana Rejab; Misato Ohtani

Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.


Plant and Cell Physiology | 2015

Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation.

Hitoshi Endo; Masatoshi Yamaguchi; Taizo Tamura; Yoshimi Nakano; Nobuyuki Nishikubo; Arata Yoneda; Ko Kato; Minoru Kubo; Shinya Kajita; Yoshihiro Katayama; Misato Ohtani; Taku Demura

The secondary cell walls of xylem cells, including vessel elements, provide mechanical strength and contribute to the conduction of water and minerals. VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a NAC-domain transcription factor that regulates the expression of genes required for xylem vessel element formation. Transient expression assays using 68 transcription factors that are expressed during xylem vessel differentiation showed that 14 transcription factors, including VND1-VND7, are putative positive regulators of VND7 expression. Electrophoretic mobility shift assays revealed that all seven VND proteins bound to the VND7 promoter region at its SMBE/TERE motif, indicating that VND7 is a direct target of all of the VND transcription factors. Overexpression of VND1-VND5, GATA12 and ANAC075, newly identified transcription factors that function upstream of VND7, resulted in ectopic xylem vessel element formation. These data suggest that VND7 transcription is a regulatory target of multiple classes of transcription factors.


Planta | 2010

Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components

Ryu Suzuki; Nobuyuki Nishikubo; Sachi Takenouchi; Sachiko Ito; Yoshimi Nakano; Satoshi Nakaba; Yuzou Sano; Ryo Funada; Shinya Kajita; Hidemi Kitano; Yoshihiro Katayama

We recently reported that the cwa1 mutation disturbed the deposition and assembly of secondary cell wall materials in the cortical fiber of rice internodes. Genetic analysis revealed that cwa1 is allelic to bc1, which encodes glycosylphosphatidylinositol (GPI)-anchored COBRA-like protein with the highest homology to Arabidopsis COBRA-like 4 (COBL4) and maize Brittle Stalk 2 (Bk2). Our results suggested that CWA1/BC1 plays a role in assembling secondary cell wall materials at appropriate sites, enabling synthesis of highly ordered secondary cell wall structure with solid and flexible internodes in rice. The N-terminal amino acid sequence of CWA1/BC1, as well as its orthologs (COBL4, Bk2) and other BC1-like proteins in rice, shows weak similarity to a family II carbohydrate-binding module (CBM2) of several bacterial cellulases. To investigate the importance of the CBM-like sequence of CWA1/BC1 in the assembly of secondary cell wall materials, Trp residues in the CBM-like sequence, which is important for carbohydrate binding, were substituted for Val residues and introduced into the cwa1 mutant. CWA1/BC1 with the mutated sequence did not complement the abnormal secondary cell walls seen in the cwa1 mutant, indicating that the CBM-like sequence is essential for the proper function of CWA1/BC1, including assembly of secondary cell wall materials.The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.


Plant Cell and Environment | 2012

DWARF50 (D50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5‐phosphatase, is required for proper development of intercalary meristem

Kanna Sato-Izawa; Satoshi Nakaba; Katsunori Tamura; Yusuke Yamagishi; Yoshimi Nakano; Nobuyuki Nishikubo; Shinya Kawai; Shinya Kajita; Motoyuki Ashikari; Ryo Funada; Yoshihiro Katayama; Hidemi Kitano

Rice internodes are vital for supporting high-yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell-producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5-phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.


Plant Cell Reports | 2005

The ectopic expression of phenylalanine ammonia lyase with ectopic accumulation of polysaccharide-linked hydroxycinnamoyl esters in internode parenchyma of rice mutant Fukei 71

Kohei Mase; Yoshimi Nakano; Nobuyuki Nishikubo; Yuuri Tsuboi; Jinmei Zhou; Hidemi Kitano; Yoshihiro Katayama

Both polysaccharide-linked hydroxycinnamoyl esters (PHEs) and lignin are biosynthesized via the phenylpropanoid pathway. In the abnormal internode parenchyma of the rice (Oryza sativa L.) mutant Fukei 71, which has a defective recessive gene (d50), the biosynthesis of lignin and PHEs differs. . The polysaccharide-linked ferulate and p-coumarate have been shown to accumulate to high levels in the irregularly shaped and collapsed internode parenchyma cells of Fukei 71 without an accompanying overaccumulation of lignin as a result of the defective d50 gene. In the present study we demonstrated that in this abnormal parenchyma tissue of Fukei 71 the expression of phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS) were ectopically induced with the ectopic accumulation of PHEs, suggesting that the d50 gene may play a role as a controlling element in the biosynthesis of PHEs during cell-wall formation in the grasses.


Plant Physiology | 2016

Primary metabolism during biosynthesis of secondary wall polymers of protoxylem vessel elements

Misato Ohtani; Keiko Morisaki; Yuji Sawada; Ryosuke Sano; Abigail Loren Tung Uy; Atsushi Yamamoto; Tetsuya Kurata; Yoshimi Nakano; Shiro Suzuki; Tomohisa Hasunuma; Masami Yokota Hirai; Taku Demura

Primary metabolism is actively regulated for the biosynthesis of secondary wall polymers during the differentiation of protoxylem vessel elements. Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell’s metabolic activity for the biosynthesis of secondary wall polymers.


Plant Cell Reports | 2006

3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase is regulated for the accumulation of polysaccharide-linked hydroxycinnamoyl esters in rice (Oryza sativa L.) internode cell walls

Kohei Mase; Yoshimi Nakano; Nobuyuki Nishikubo; Rika Sugita; Yuuri Tsuboi; Shinya Kajita; Jinmei Zhou; Hidemi Kitano; Yoshihiro Katayama

Polysaccharide-linked hydroxycinnamoyl esters (PHEs) over-accumulate in the internodes of a rice (Oryza sativa L.) mutant, Fukei 71 (F71). This accumulation is accompanied by over-expression of phenylalanine ammonialyase (PAL). In this study, we show that only one member of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) family expresses in close correlation with PAL. Furthermore, substrate availability to DAHPS is promoted by down-regulating the expression of plastidic pyruvate kinase (PKp), a competitor of DAHPS. Since the over-production of PHEs is caused by D50 gene disruption, these results suggest that specific enzymes in the phenylpropanoid and shikimate pathways are coordinately up-regulated. In addition, the results indicate that carbon-flow into the shikimate pathway is modified for the synthesis of PHEs, and is probably controlled by D50.


Carbohydrate Polymers | 2017

Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells

Tadashi Ishii; Keita Matsuoka; Hiroshi Ono; Mayumi Ohnishi-Kameyama; Katsuro Yaoi; Yoshimi Nakano; Misato Ohtani; Taku Demura; Hiroaki Iwai; Shinobu Satoh

The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation.

Collaboration


Dive into the Yoshimi Nakano's collaboration.

Top Co-Authors

Avatar

Misato Ohtani

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuyuki Nishikubo

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinya Kajita

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryosuke Sano

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Paul Dupree

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Arata Yoneda

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge