Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshito Tsuchiya is active.

Publication


Featured researches published by Yoshito Tsuchiya.


19th International Conference on Coastal Engineering | 1985

SCALE-MODEL RELATIONSHIP OF BEACH PROFILE

Masahiro Ito; Yoshito Tsuchiya

This report will update the coastal zone practitioner on the National Flood Insurance Program (NFIP) as it affects the implementation of manmade changes along the coastline. It is our intent to place in proper perspective this fast-changing and often difficult to interpret national program. Readers will achieve an overall understanding of the NFIP on the coast, and will be in a position to apply the programs requirements in their efforts. We will begin with a history of the application of the NFIP to the coastal zone. The history of the problems encountered will lead into current regulations, methodologies, and the changes the Federal Emergency Management Agency plans for the future.The spatial variability of the nearshore wave field is examined in terms of the coherence functions found between five closely spaced wave gages moored off the North Carolina coast in 17 meters depth. Coherence was found to rapidly decrease as the separation distance increased, particularly in the along-crest direction. This effect is expressed as nondimensional coherence contours which can be used to provide an estimate of the wave coherence expected between two spatial positions.Prediction of depositional patterns in estuaries is one of the primary concerns to coastal engineers planning major hydraulic works. For a well-mixed estuary where suspended load is the dominant transport mode, we propose to use the divergence of the distribution of the net suspended load to predict the depositional patterns. The method is applied to Hangzhou Bay, and the results agree well qualitatively with measured results while quantitatively they are also of the right order of magnitude.


NATO ASI series. Series E, Applied sciences | 1990

Transformation Characteristics of Breaking Water Waves

James R. Tallent; Takao Yamashita; Yoshito Tsuchiya

The purpose of this study is to examine the physical processes of wave energy decay in breaking, and to determine how this process varies for changes in initial wave and beach conditions. Visualization methods are the primary source of data acquisition. Wave energy decay is discussed in terms of the intermittent formation of large scale vortex like motions (eddies). These surface generated eddies are observed to possess an organized structure in their formation and decay. Detail observations of the eddy generation and decay mechanisms are presented and discussed. The length and time scales of the large scale eddies are measured for a range of initial wave conditions and for two bed slopes. It is shown that the large scale vortex like motions generated in the surface region of a breaking wave play a very important role in wave energy dissipation. Furthermore, characteristics of the eddy are shown to depend on the initial wave properties, beach slope, and surf zone location.


18th International Conference on Coastal Engineering | 1982

THE RATE OF LONGSHORE SEDIMENT TRANSPORT AND BEACH EROSION CONTROL

Yoshito Tsuchiya

The cost of many coastal projects is often increased by the expensive beach repair and maintenance required to remedy the destabilising effects of structures on the adjoining coastline. Physical and/or mathematical models have been developed for use in planning these projects in order to predict and quantify the effects of marine sediment transport on the coastal topography. Such models need to be calibrated against prototype data and one method of gauging volumetric sediment movement is by successive bathymetric/ topographic profiting surveys which are performed seasonally and annually. Since large quantities of sediment are related to small changes in bed elevation it is clear that this profiling needs to be done with the utmost precision* The areas most affected extend from the beach through the surf zone to water depths of about 25 metres. The surf zone in particular is a dynamic and hostile area which falls outside the traditional activities of both the hydrographic and land surveyors. Consequently innovative methods, deficient in sound survey principle and practice, have often been pursued in this area without any attempt being made to assess the tolerance on the data. This paper attempts to show that it is possible to produce reliable and verifiable results to the required accuracy by using conventional survey equipment and techniques, also by taking the necessary precautions against the many possible sources of survey error. The procedures and techniques described have evolved from NRIOs involvement over the past decade in major projects at Richards Bay, Durban, Koeberg and in False Bay. The results of a recent verification investigation are fully reported in this paper.Besides wave impact forces, erosion of the inner side of a sea dike is a serious cause of destruction. Therefore, wave run-up and overtopping effects have to be considered with respect to the safety of a dike. Strong relations were found between both these influences (TAUTENHAIN et.al., 1980, 1981, 1982), based on experiments in a wave flume and using an energy conservation concept. However, under natural conditions, an oblique wave approach has to be considered. This paper deals with the influence of wave direction on wave runup on a smooth dike slope in order to provide a basis for calculating the overtopping rates for both regular and irregular waves.This paper describes a study carried out at Port Taranaki, New Plymouth, New Zealand to determine ships track and motions at the port entrance. The results of the study being used to establish the extent (plan area) and optimum depth of proposed capital dredging works. The time lapse photographic technique, incorporating reference levels and bearings in each frame, used to record vessels entering and leaving the port is described, Maximum increases in ships draft due to sea conditions are given.N.S.L. program is a finite-difference code for two dimensionnal flows with a free surface in a vertical plane. Basic equations are Navier-Stokes Equations with a simple simulation of turbulent effects by an eddy viscosity coefficient related to the mixing length and the mean velocity gradient. Theses equations are solved in a variable domain in time. The main features of the numerical method are presented. Some comparisons with theoretical solutions give a good validation of the code both in linear and non linear cases. Other examples of application are given.The design of the coal unloading terminal in an unprotected environment created the need to develop design criteria as well as operational and structural systems that will respond toproblems arising from unloading bulk in the open sea. As there was no known precedent of an unprotected unloading terminal, the criteria was based on experience in existing offshore loadina terminals, laboratory tests and engineering judgement.A large number of man-made tidal swimming pools (two examples are shown in Figure 1) exist along the South African coast. They are usually situated on rocky outcrops in the close vicinity of popular sandy bathing beaches to provide protected bathing conditions in these areas mainly for children and elderly people. Some tidal pools, especially along rocky coast, provide the only safe bathing facilities. Besides affording protection against waves and surfzone currents the pools provide protection from sharks. A large number of tidal pools were built during the early 1950s along the Natal South Coast after the occurrence of a relatively large number of shark attacks on bathers on that coast. The semi-diurnal tide with a range of about 1,5 m along the South African coast makes it possible for pools to be built such that water replenishment can occur during every high-water (approximately every 12 hours) during both neap and spring tide periods. Presently, there exists a great need for more tidal pools as part of the demand for more recreational facilities along the South African coast. However, no information on design criteria could be found in the literature.The objective of this research is to study the prediction method of hurricane waves around this island, especially in the Taiwan Strait. The paper describes the prediction of hurricane waves used by Bretchneiders (1976) Method and finds out the predicted waves are different from measured waves, therefore the Bretchneider predicted model is modified by the authors and then the modified model is applied to predict waves again. It is found out that predicted waves match well with the measured waves. The results of the modified Bretchneider model are compared with those of the Ijima tracing method and find out the former is better than the latter. The second part is to apply the modified model to predict the extreme value of wave heights and compute the worse hurricane wave condition of the surrounding sea area around island, within recent score year (1959-1978). The calculated sites are Chu-Wei, Nan-Liaw, Ta-Shih, Cheng-Kung, Pu-Tai, Tung-Kang, Nan-Wan as shown in Fig.1 and Shiau Liu- Chieu totally 8 stations. Then use the Gumbel Distribution TYPE 1 to predict the extreme wave height of each returned period.In the design and construction of waterfront bulkhead systems, it is essential to consider the coastal effects of tides, waves, boat wakes, currents, bottom sediment movement and bottom scour. Many improperly designed bulkhead systems experience severe loss of backfill and toe materials with the bulkhead eventually failing if it is not corrected in time. Inadequate drainage, joint connections, and/or inadequate toe protection are typically the causes of failure. This paper describes an investigation of a bulkhead system supporting a large waterfront development in southern California which was experiencing widespread sinkhole development in the bulkheads backfill and was on the verge of losing toe material. The objective of this investigation was to determine the extent and cause of ongoing subsurface erosion, to evaluate its effect on the bulkhead stability, and to recommend and design mitigative measures. The cause of the erosion was determined to be piping of fine grained soils due to inadequate backfill drainage. A remedial drainage scheme was designed and field-tested, and several structural repair schemes were suggested for portions of the bulkhead where accumulated damage affected the integrity of the structure.


Coastal Engineering | 1970

SUCCESSIVE SALTATION OF A SAND GRAIN BY WIND

Yoshito Tsuchiya

The wave-induced longshore current variation across the surf zone is described for a simplified model The basic assumptions are that the conditions are steady, the bottom contours are straight and parallel but allow for an arbitrary bottom profile, the waves are adequately described by linear theory, and that spilling breakers exist across the surf zone Conservation equations of mass, momentum, and energy, separated into the steady and unsteady components, are used to describe second order-wave-induced phenomena of shoaling waves approaching at an angle to the beach An expression for the longshore current is developed, based on the alongshore component of excess momentum flux due to the presence of unsteady wave motion Wave set-down and set-up have been included in the formulation Emphasis in the analysis is placed on formulating usable predictive equations for engineering practice Comparison with experimental results from the laboratory and field show that if the assumed conditions are approximately fulfilled, the predicted results compare quite favorably


24th International Conference on Coastal Engineering | 1995

PREDICTION OF THE MAXIMUM WAVE ON THE CORAL FLAT

Dede. M. Sulaiman; Shigeaki Tsutsui; Hiroshi Yoshioka; Takao Yamashita; Shinichi Oshiro; Yoshito Tsuchiya

A special reflecting wall 12 m long and 2.1 m high was built off the beach at Reggio Calabria, and 30 wave gauges were assembled before the wall and were connected to an electronic station on land. It was possible to observe the reflection of wind waves generated by a very stable wind over a fetch of 10 Km. The experiment aimed to verify the general closed solution for the wave group mechanics (Boccotti, 1988, 1989), for the special case of the wave reflection.Significant features on Wadden Sea wave climate are evaluated in respect of the state of the art. Main emphasis was laid on an analysis of the governing boundary conditions of local wave climate in island sheltered Wadden Sea areas with extensions being sufficient for local wind wave growth. Explanatory for significant wave heights a reliable parametrization of local wave climate has been evaluated by using generally available data of water level and wind measurements.


12th International Conference on Coastal Engineering | 1970

LIMITING CONDITION FOR STANDING WAVE THEORIES BY PERTURBATION METHOD

Yoshito Tsuchiya; Masataka Yamaguchi

The wave-induced longshore current variation across the surf zone is described for a simplified model The basic assumptions are that the conditions are steady, the bottom contours are straight and parallel but allow for an arbitrary bottom profile, the waves are adequately described by linear theory, and that spilling breakers exist across the surf zone Conservation equations of mass, momentum, and energy, separated into the steady and unsteady components, are used to describe second order-wave-induced phenomena of shoaling waves approaching at an angle to the beach An expression for the longshore current is developed, based on the alongshore component of excess momentum flux due to the presence of unsteady wave motion Wave set-down and set-up have been included in the formulation Emphasis in the analysis is placed on formulating usable predictive equations for engineering practice Comparison with experimental results from the laboratory and field show that if the assumed conditions are approximately fulfilled, the predicted results compare quite favorably


20th International Conference on Coastal Engineering | 1987

APPLICABILITY OF SUB-SAND SYSTEM TO BEACH EROSION CONTROL

Yoshiaki Kawata; Yoshito Tsuchiya

More than 150 tests have been analyzed in order to describe the dynamically stable profiles of rock slopes and gravel beaches under wave attack. Relationships between profile parameters and boundary conditions have been established. These relationships have been used to develop a computer program. This program is able to predict the profiles of slopes with an arbitrary shape under varying wave conditions, such as those found in storm surges and during the tidal period.This paper investigates the utility of winds obtainable from a numerical weather prediction model for driving a spectral ocean-wave model in an operational mode. Wind inputs for two operational spectral wave models were analyzed with respect to observed winds at three locations in the Canadian east coast offshore. Also, significant wave heights obtainable from the two spectral models were evaluated against measured wave data at these locations. Based on this analysis, the importance of appropriate wind specification for operational wave analysis and forecasting is demonstrated.


20th International Conference on Coastal Engineering | 1987

TIME SCALE FOR MODELING BEACH CHANGE

Masahiro Ito; Yoshito Tsuchiya

More than 150 tests have been analyzed in order to describe the dynamically stable profiles of rock slopes and gravel beaches under wave attack. Relationships between profile parameters and boundary conditions have been established. These relationships have been used to develop a computer program. This program is able to predict the profiles of slopes with an arbitrary shape under varying wave conditions, such as those found in storm surges and during the tidal period.This paper investigates the utility of winds obtainable from a numerical weather prediction model for driving a spectral ocean-wave model in an operational mode. Wind inputs for two operational spectral wave models were analyzed with respect to observed winds at three locations in the Canadian east coast offshore. Also, significant wave heights obtainable from the two spectral models were evaluated against measured wave data at these locations. Based on this analysis, the importance of appropriate wind specification for operational wave analysis and forecasting is demonstrated.


13th International Conference on Coastal Engineering | 1972

HORIZONTAL AND VERTICAL WATER PARTICLE VELOCITIES INDUCED El WAVES

Yoshito Tsuchiya; Masataka Yamaguchi

The data for the spectra of wind-generated waves measured in a laboratory tank and in a bay are analyzed using the similarity theory of Kitaigorodski, and the one-dimensional spectra of fetch-limited wind waves are determined from the data. The combined field and laboratory data cover such a wide range of dimensionless fetch F (= gF/u ) as F : 10 ~ 10 . The fetch relations for the growthes of spectral peak frequency u)m and of total energy E of the spectrum are derived from the proposed spectra, which are consistent with those derived directly from the measured spectra.A solution of finite amplitude long waves on constant sloping beaches is obtained by solving the equations of the shallow water theory of the lowest order. Non-linearity of this theory is taken into account, using the perturbation method. Bessel functions involved in the solution are approximated with trigonometric functions. The applicable range of this theory is determined from the two limit conditions caused by the hydrostatic pressure assumption and the trigonometric function approximation of Bessel functions. The shoaling of this finite amplitude long waves on constant sloping beaches is discussed. Especially, the effects of the beach slope on the wave height change and the asymmetric wave profile near the breaking point are examined, which can not be explained by the concept of constancy of wave energy flux based on the theory of progressive waves in uniform depth. These theoretical results are presented graphically, and compared with curves of wave shoaling based on finite amplitude wave theories. On the other hand, the experiments are conducted with respect to the transformation of waves progressing on beaches of three kinds of slopes ( 1/30, 1/2.0 and 1/10 ) . The experimental results are compared with the theoretical curves to confirm the validity of the theory.Measurements of drift were made in a wind and wave facility at different elevations below the mean water level. The drift profiles were obtained for reference wind speeds, Ur = 3.1, 5.7 and 9.6 m/sec. The measurement technique involved tracing the movement of small paper discs which were soaked in water to become neutrally buoyant at the elevation of release. A logarithmic drift profile is proposed. The water shear velocity, U*w, predicts a surface stress, TS = pw U*S, in agreement with that obtained from the wind shear velocity, s = Pa U*li where pa and pw refer to air and water densities, respectively.The paper describes a procedure for obtaining field data on the mean concentration of sediments in combination of waves and currents outside the breaker zone, as well as some results of such measurements. It is assumed that the current turbulence alone is responsible for the maintenance of the concentration profile above a thin layer close to the bottom, in which pick-up of sediments due to wave agitation takes place. This assumption gives a good agreement between field data and calculated concentration profiles.A section of beach on the south coast of England has been under surveillance for five years, from March 1966 until March 1971. During this period, two permeable groynes of the Makepeace Wood type were constructed. Beach cross sectional areas and rates of accretion were compared before and after groyne construction. The groynes caused a buildup in beach levels updrift.The results of model tests, carried out to evaluate the stability of submarine slopes under wave action are presented. A Bentonite clay was sedimented in a glass walled tank 6 feet long by 0.5 feet wide by 2.5 feet deep. The sedimentation and consolidation processes were studied and sediment densities were measured at various depths in the profile. Vane shear strength profiles were also measured afvarious average degrees of consolidation. Plastic markers were placed in the sediment adjacent to a glass wall so that the soil movements under both gravity and wave induced slides could be documented by photography. Dimensional similitude is discussed and the model test data are presented in a dimensionless form. All instabilities were observed to be of the infinite slope type. Analysis of the data shows that wave action is instrumental in initiating downslope mass movements in gently to steeply sloping off-shore sediments. General lack of agreement between the model test results and published theoretical analyses was found but there was close similarity in the depths and form of failure under wave action and under gravity stresses alone. The loss of stability under wave action is analyzed on the concept that failure is gravity controlled and the soil strength is reduced to a value commensurate with gravity sliding by the cyclic shearing stresses imposed by progressive waves. A method of evaluating the stability of prototype slopes using a model test correlation and field vane strength measurements is proposed. INTRODUCTION Instabilities in submarine slopes have been observed or have been inferred over a wide range of slope angles from less than half a degree up to about 30°. These subaqueous landslides are believed to have caused rupture of submarine cables and to have generated many of the geomorphological features on the ocean bottom. There are numerous records describing these landslides but very few publications discuss the application of the principles of soil mechanics to the analysis of the stability of submarine slopes. Associate Professor of Civil Engineering, Queens University at Kingston, Canada 2 Soils Engineer, Geocon Ltd., Toronto, Canada 3 Associate Professor of Civil Engineering, Cornell University, Ithaca, N.Y.Several mathematical models have been lately presented which describe the tidal wave propagation within an estuary. The existing models derived from the method for damped co-oscillating tides are based on sinusoidal wave profile. Meanwhile a tidal wave which moves upstream, generally exhibits a progressive deformation which tends to unbalance the length of time between flood and ebb tides. The actual profile is therefore no longer sinusoidal. Our investigation uses the potential method, and takes into account the wave amplitude which is usually neglected compared with the water depth. Finally, the velocity potential is obtained explicitely, using a double iterative method. Tidal elevation, particle velocities and trajectories are given by the same computer programmed algorithm. Our study shows that l) the phenomenon can be clearly visualized on the theoretical curves and 2) the magnitude of this deformation is inversely proportional to the water depth, becoming significant when the ratio f|/h reaches the critical value of 1/10. Damping and geometrical effects are also considered and the theory was applied to the St.Lawrence Estuary. A partial positive reflection of the incoming tidal wave is assumed at the narrow section near Quebec, whereas a complete negative reflection is assumed at the entrance to Lake St.Peter. The calculated and observed wave profiles, velocity distributions, and phase shifts are in good agreement.A numerical model is presented to describe the hydromechanics of lagoons connected to the ocean by relatively narrow inlets. Because special attention is given to the flushing, all second order terms in the hydrodynamic equations are retained. The study is restricted to lagoons with a onedimensional flow pattern and water of uniform density. In designing a numerical solution to the equations, the inlet equations are regarded as implicit boundary conditions to the equations describing the flow in the lagoon proper. The advantages of this approach are: (1) the size of the computational grid in the lagoon can be chosen independently of the relatively small dimensions of the inlets and (2) the flow at branching inlets (an inlet connecting a lagoon to the ocean such that branching of the inlet flow can occur) still can be described by a one-dimensional tidal model. The predictive capability of the numerical model is confirmed by favorable comparison between measured and computed particle paths and net transport for a series of laboratory experiments. In the experiments a canal of uniform width and depth is freely connected to a tidal basin at one end and at the other end is connected to the same basin by a submerged weir.


13th International Conference on Coastal Engineering | 1972

CHARACTERISTICS OF SALTATION OF SAND GRAINS BY WIND

Yoshito Tsuchiya; Yoshiaki Kawata

The data for the spectra of wind-generated waves measured in a laboratory tank and in a bay are analyzed using the similarity theory of Kitaigorodski, and the one-dimensional spectra of fetch-limited wind waves are determined from the data. The combined field and laboratory data cover such a wide range of dimensionless fetch F (= gF/u ) as F : 10 ~ 10 . The fetch relations for the growthes of spectral peak frequency u)m and of total energy E of the spectrum are derived from the proposed spectra, which are consistent with those derived directly from the measured spectra.A solution of finite amplitude long waves on constant sloping beaches is obtained by solving the equations of the shallow water theory of the lowest order. Non-linearity of this theory is taken into account, using the perturbation method. Bessel functions involved in the solution are approximated with trigonometric functions. The applicable range of this theory is determined from the two limit conditions caused by the hydrostatic pressure assumption and the trigonometric function approximation of Bessel functions. The shoaling of this finite amplitude long waves on constant sloping beaches is discussed. Especially, the effects of the beach slope on the wave height change and the asymmetric wave profile near the breaking point are examined, which can not be explained by the concept of constancy of wave energy flux based on the theory of progressive waves in uniform depth. These theoretical results are presented graphically, and compared with curves of wave shoaling based on finite amplitude wave theories. On the other hand, the experiments are conducted with respect to the transformation of waves progressing on beaches of three kinds of slopes ( 1/30, 1/2.0 and 1/10 ) . The experimental results are compared with the theoretical curves to confirm the validity of the theory.Measurements of drift were made in a wind and wave facility at different elevations below the mean water level. The drift profiles were obtained for reference wind speeds, Ur = 3.1, 5.7 and 9.6 m/sec. The measurement technique involved tracing the movement of small paper discs which were soaked in water to become neutrally buoyant at the elevation of release. A logarithmic drift profile is proposed. The water shear velocity, U*w, predicts a surface stress, TS = pw U*S, in agreement with that obtained from the wind shear velocity, s = Pa U*li where pa and pw refer to air and water densities, respectively.The paper describes a procedure for obtaining field data on the mean concentration of sediments in combination of waves and currents outside the breaker zone, as well as some results of such measurements. It is assumed that the current turbulence alone is responsible for the maintenance of the concentration profile above a thin layer close to the bottom, in which pick-up of sediments due to wave agitation takes place. This assumption gives a good agreement between field data and calculated concentration profiles.A section of beach on the south coast of England has been under surveillance for five years, from March 1966 until March 1971. During this period, two permeable groynes of the Makepeace Wood type were constructed. Beach cross sectional areas and rates of accretion were compared before and after groyne construction. The groynes caused a buildup in beach levels updrift.The results of model tests, carried out to evaluate the stability of submarine slopes under wave action are presented. A Bentonite clay was sedimented in a glass walled tank 6 feet long by 0.5 feet wide by 2.5 feet deep. The sedimentation and consolidation processes were studied and sediment densities were measured at various depths in the profile. Vane shear strength profiles were also measured afvarious average degrees of consolidation. Plastic markers were placed in the sediment adjacent to a glass wall so that the soil movements under both gravity and wave induced slides could be documented by photography. Dimensional similitude is discussed and the model test data are presented in a dimensionless form. All instabilities were observed to be of the infinite slope type. Analysis of the data shows that wave action is instrumental in initiating downslope mass movements in gently to steeply sloping off-shore sediments. General lack of agreement between the model test results and published theoretical analyses was found but there was close similarity in the depths and form of failure under wave action and under gravity stresses alone. The loss of stability under wave action is analyzed on the concept that failure is gravity controlled and the soil strength is reduced to a value commensurate with gravity sliding by the cyclic shearing stresses imposed by progressive waves. A method of evaluating the stability of prototype slopes using a model test correlation and field vane strength measurements is proposed. INTRODUCTION Instabilities in submarine slopes have been observed or have been inferred over a wide range of slope angles from less than half a degree up to about 30°. These subaqueous landslides are believed to have caused rupture of submarine cables and to have generated many of the geomorphological features on the ocean bottom. There are numerous records describing these landslides but very few publications discuss the application of the principles of soil mechanics to the analysis of the stability of submarine slopes. Associate Professor of Civil Engineering, Queens University at Kingston, Canada 2 Soils Engineer, Geocon Ltd., Toronto, Canada 3 Associate Professor of Civil Engineering, Cornell University, Ithaca, N.Y.Several mathematical models have been lately presented which describe the tidal wave propagation within an estuary. The existing models derived from the method for damped co-oscillating tides are based on sinusoidal wave profile. Meanwhile a tidal wave which moves upstream, generally exhibits a progressive deformation which tends to unbalance the length of time between flood and ebb tides. The actual profile is therefore no longer sinusoidal. Our investigation uses the potential method, and takes into account the wave amplitude which is usually neglected compared with the water depth. Finally, the velocity potential is obtained explicitely, using a double iterative method. Tidal elevation, particle velocities and trajectories are given by the same computer programmed algorithm. Our study shows that l) the phenomenon can be clearly visualized on the theoretical curves and 2) the magnitude of this deformation is inversely proportional to the water depth, becoming significant when the ratio f|/h reaches the critical value of 1/10. Damping and geometrical effects are also considered and the theory was applied to the St.Lawrence Estuary. A partial positive reflection of the incoming tidal wave is assumed at the narrow section near Quebec, whereas a complete negative reflection is assumed at the entrance to Lake St.Peter. The calculated and observed wave profiles, velocity distributions, and phase shifts are in good agreement.A numerical model is presented to describe the hydromechanics of lagoons connected to the ocean by relatively narrow inlets. Because special attention is given to the flushing, all second order terms in the hydrodynamic equations are retained. The study is restricted to lagoons with a onedimensional flow pattern and water of uniform density. In designing a numerical solution to the equations, the inlet equations are regarded as implicit boundary conditions to the equations describing the flow in the lagoon proper. The advantages of this approach are: (1) the size of the computational grid in the lagoon can be chosen independently of the relatively small dimensions of the inlets and (2) the flow at branching inlets (an inlet connecting a lagoon to the ocean such that branching of the inlet flow can occur) still can be described by a one-dimensional tidal model. The predictive capability of the numerical model is confirmed by favorable comparison between measured and computed particle paths and net transport for a series of laboratory experiments. In the experiments a canal of uniform width and depth is freely connected to a tidal basin at one end and at the other end is connected to the same basin by a submerged weir.

Collaboration


Dive into the Yoshito Tsuchiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge