Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshitsugu Adachi is active.

Publication


Featured researches published by Yoshitsugu Adachi.


Cell Reports | 2013

Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

Youn Bok Lee; Han-Jou Chen; João N. Peres; Jorge Gomez-Deza; Maja Štalekar; Claire Troakes; Agnes L. Nishimura; Emma L. Scotter; Caroline Vance; Yoshitsugu Adachi; Valentina Sardone; John Miller; Bradley Smith; Jean-Marc Gallo; Jernej Ule; Frank Hirth; Boris Rogelj; Corinne Houart; Christopher Shaw

Summary The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


Human Molecular Genetics | 2013

Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes.

Danielle Diaper; Yoshitsugu Adachi; Ben Sutcliffe; Dickon M. Humphrey; Christopher J. H. Elliott; Alan Stepto; Zoe N. Ludlow; Lies Vanden Broeck; Patrick Callaerts; Bart Dermaut; Ammar Al-Chalabi; Christopher Shaw; Iain M. Robinson; Frank Hirth

Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration.


Cell Reports | 2013

TDP-43 Loss-of-Function Causes Neuronal Loss Due to Defective Steroid Receptor-Mediated Gene Program Switching in Drosophila

Lies Vanden Broeck; Marina Naval-Sánchez; Yoshitsugu Adachi; Danielle Diaper; Pierre Dourlen; Julien Chapuis; Gernot Kleinberger; Marc Gistelinck; Christine Van Broeckhoven; Jean-Charles Lambert; Frank Hirth; Stein Aerts; Patrick Callaerts; Bart Dermaut

TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased and decreased expression of TDP-43 (dTDP-43) in Drosophila. Although upregulation of dTDP-43 induced neuronal ubiquitin and dTDP-43-positive inclusions, both up- and downregulated dTDP-43 resulted in selective apoptosis of bursicon neurons and highly similar transcriptome alterations at the pupal-adult transition. Gene network analysis and genetic validation showed that both up- and downregulated dTDP-43 directly and dramatically increased the expression of the neuronal microtubule-associated protein Map205, resulting in cytoplasmic accumulations of the ecdysteroid receptor (EcR) and a failure to switch EcR-dependent gene programs from a pupal to adult pattern. We propose that dTDP-43 neurotoxicity is caused by a loss of its normal function.


Human Molecular Genetics | 2013

Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD.

Danielle Diaper; Yoshitsugu Adachi; Luke Lazarou; Max Greenstein; Fabio A. Simoes; Angelique Di Domenico; Daniel A. Solomon; Simon Lowe; Rawan Alsubaie; Daryl Cheng; Stephen Buckley; Dickon M. Humphrey; Christopher Shaw; Frank Hirth

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that are characterized by cytoplasmic aggregates and nuclear clearance of TAR DNA-binding protein 43 (TDP-43). Studies in Drosophila, zebrafish and mouse demonstrate that the neuronal dysfunction of TDP-43 is causally related to disease formation. However, TDP-43 aggregates are also observed in glia and muscle cells, which are equally affected in ALS and FTLD; yet, it is unclear whether glia- or muscle-specific dysfunction of TDP-43 contributes to pathogenesis. Here, we show that similar to its human homologue, Drosophila TDP-43, Tar DNA-binding protein homologue (TBPH), is expressed in glia and muscle cells. Muscle-specific knockdown of TBPH causes age-related motor abnormalities, whereas muscle-specific gain of function leads to sarcoplasmic aggregates and nuclear TBPH depletion, which is accompanied by behavioural deficits and premature lethality. TBPH dysfunction in glia cells causes age-related motor deficits and premature lethality. In addition, both loss and gain of Drosophila TDP-43 alter mRNA expression levels of the glutamate transporters Excitatory amino acid transporter 1 (EAAT1) and EAAT2. Taken together, our results demonstrate that both loss and gain of TDP-43 function in muscle and glial cells can lead to cytological and behavioural phenotypes in Drosophila that also characterize ALS and FTLD and identify the glutamate transporters EAAT1/2 as potential direct targets of TDP-43 function. These findings suggest that together with neuronal pathology, glial- and muscle-specific TDP-43 dysfunction may directly contribute to the aetiology and progression of TDP-43-related ALS and FTLD.


Molecular Neurodegeneration | 2013

Expanded G4C2 repeats linked to C9ORF72 ALS and FTD form length-dependent RNA foci, sequester RNA binding proteins and are neurotoxic.

Youn Bok Lee; Han-Jou Chen; João N. Peres; Jorge Gomez; Valentina Sardone; Agnes L. Nishimura; Emma L. Scotter; Caroline Vance; Maja Štalekar; Yoshitsugu Adachi; Claire Troakes; John Miller; Bradley Smith; Frank Hirth; Boris Rogelj; Corinne Houart; Christopher Shaw

Background The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) [1,2]. The mechanism by which the G4C2 intronic repeats cause neurodegeneration is unknown. Decreased tissue levels of the C9ORF72 transcript implicate a loss of protein function due to haploinsufficiency, intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic [1].


bioRxiv | 2017

A lineage-related reciprocal inhibition circuitry for sensory-motor action selection

Benjamin Kottler; Vincenzo G. Fiore; Zoe N. Ludlow; Edgar Buhl; Gerald Vinatier; R.A. Faville; Danielle Diaper; Alan Stepto; Jonah Dearlove; Yoshitsugu Adachi; Sheena Brown; Chenghao Chen; Daniel A. Solomon; Katherine E. White; Dickon M. Humphrey; Sean M. Buchanan; Stephan J Sigrist; Keita Endo; Kei Ito; Benjamin L. de Bivort; Ralf Stanewsky; R. J. Dolan; Jean-René Martin; James J. L. Hodge; Nicholas J. Strausfeld; Frank Hirth

The insect central complex and vertebrate basal ganglia are forebrain centres involved in selection and maintenance of behavioural actions. However, little is known about the formation of the underlying circuits, or how they integrate sensory information for motor actions. Here, we show that paired embryonic neuroblasts generate central complex ring neurons that mediate sensory-motor transformation and action selection in Drosophila. Lineage analysis resolves four ring neuron subtypes, R1-R4, that form GABAergic inhibition circuitry among inhibitory sister cells. Genetic manipulations, together with functional imaging, demonstrate subtype-specific R neurons mediate the selection and maintenance of behavioural activity. A computational model substantiates genetic and behavioural observations suggesting that R neuron circuitry functions as salience detector using competitive inhibition to amplify, maintain or switch between activity states. The resultant gating mechanism translates facilitation, inhibition and disinhibition of behavioural activity as R neuron functions into selection of motor actions and their organisation into action sequences.


Human Molecular Genetics | 2017

C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity

Youn Bok Lee; Pranetha Baskaran; Jorge Gomez-Deza; Han-Jou Chen; Agnes L. Nishimura; Bradley Smith; Claire Troakes; Yoshitsugu Adachi; Alan Stepto; Leonard Petrucelli; Jean-Marc Gallo; Frank Hirth; Boris Rogelj; Sarah Guthrie; Christopher Shaw

Abstract An intronic GGGGCC (G4C2) hexanucleotide repeat expansion inC9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 RNA can result in five different dipeptide repeat proteins (DPR: poly GA, poly GP, poly GR, poly PA, and poly PR), which aggregate into neuronal cytoplasmic and nuclear inclusions in affected patients, however their contribution to disease pathogenesis remains controversial. We show that among the DPR proteins, expression of poly GA in a cell culture model activates programmed cell death and TDP-43 cleavage in a dose-dependent manner. Dual expression of poly GA together with other DPRs revealed that poly GP and poly PA are sequestered by poly GA, whereas poly GR and poly PR are rarely co-localised with poly GA. Dual expression of poly GA and poly PA ameliorated poly GA toxicity by inhibiting poly GA aggregation both in vitro and in vivo in the chick embryonic spinal cord. Expression of alternative codon-derived DPRs in chick embryonic spinal cord confirmed in vitro data, revealing that each of the dipeptides caused toxicity, with poly GA being the most toxic. Further, in vivo expression of G4C2 repeats of varying length caused apoptotic cell death, but failed to generate DPRs. Together, these data demonstrate that C9-related toxicity can be mediated by either RNA or DPRs. Moreover, our findings provide evidence that poly GA is a key mediator of cytotoxicity and that cross-talk between DPR proteins likely modifies their pathogenic status in C9ALS/FTD.


Brain | 2018

A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration

Daniel A. Solomon; Alan Stepto; Wing Hei Au; Yoshitsugu Adachi; Danielle Diaper; Rachel Hall; Anjeet Rekhi; Adel Boudi; Paraskevi Tziortzouda; Youn Bok Lee; Bradley Smith; Jessika C. Bridi; Greta Spinelli; Jonah Dearlove; Dickon M. Humphrey; Jean-Marc Gallo; Claire Troakes; Manolis Fanto; Matthias Soller; Boris Rogelj; Richard B. Parsons; Christopher Shaw; Tibor Hortobágyi; Frank Hirth

TDP-43 accumulation is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia, including the most common genetic cause, G4C2 hexanucleotide repeat expansion in C9ORF72 (C9ALS/FTD). Solomon et al. report that G4C2-derived dipeptide repeat protein but not G4C2-RNA accumulation causes TDP-43 proteinopathy that triggers onset and progression of disease.


Journal of Neurogenetics | 2012

TDP-43 neurotoxicity by failed steroid receptor-dependent transcriptional program switching

L. Vanden Broeck; Naval M. Sanchez; Yoshitsugu Adachi; Danielle Diaper; Pierre Dourlen; Marc Gistelinck; Frank Hirth; Stein Aerts; Patrick Callaerts; Bart Dermaut

S FOR TALKS (IN CHRONOLOGICAL ORDER)


Dementia and Geriatric Cognitive Disorders | 2012

Both loss and gain of TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration in Drosophilia

Danielle Diaper; Yoshitsugu Adachi; Ben Sutcliffe; Dickon M. Humphrey; Christopher J. H. Elliott; Triona Fielding; M. Burki; Zoe N. Ludlow; L. Vanden Broeck; Patrick Callaerts; B. Dermaut; Ammar Al-Chalabi; Christopher Shaw; Frank Hirth

Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The genetics of FTD has been one of the success stories in genetics over the past 15 years. Classic family based linkage studies have identified genes that explain a large part of the families with a Mendelian inheritance of the disease. This group of familial FTD patients has now been linked to mutations in several genes, including the microtubule-associated protein tau (MAPT), progranulin (GRN), valosin-containing protein (VCP), charged multivescicular body protein 2B (CHMP2B), TAR DNA-binding protein 43 (TDP43) and Fused in Sarcoma (FUS) and most recently C9Orf72. Over the years the identified genes have triggered many studies that increased our understanding of the disease process. Neuropathologically the disease can be divided in two major groups that have a clear correlation with their genetic background; hose with tau-positive inclusions and those with ubiquitin-positive and TDP43 positive inclusions. The field of genetics keeps changing rapidly thanks to technological developments, first with the development of Genome Wide Association Studies (GWAS) studies but now also with the use of next generation sequencing, as was already demonstrated with the identification of the expanded repeat in C9Orf72, and we can also expect many whole exome or whole genome sequencing studies. This review provides an overview of the genetics of FTD, with an update of recent discoveries.

Collaboration


Dive into the Yoshitsugu Adachi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge