Young Shin Park
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Young Shin Park.
Nature Communications | 2013
Wan Ki Bae; Young Shin Park; Jaehoon Lim; Donggu Lee; Lazaro A. Padilha; Hunter McDaniel; Istvan Robel; Changhee Lee; Jeffrey M. Pietryga; Victor I. Klimov
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection.
ACS Nano | 2013
Wan Ki Bae; Lazaro A. Padilha; Young Shin Park; Hunter McDaniel; Istvan Robel; Jeffrey M. Pietryga; Victor I. Klimov
The influence of a CdSexS1-x interfacial alloyed layer on the photophysical properties of core/shell CdSe/CdS nanocrystal quantum dots (QDs) is investigated by comparing reference QDs with a sharp core/shell interface to alloyed structures with an intermediate CdSexS1-x layer at the core/shell interface. To fully realize the structural contrast, we have developed two novel synthetic approaches: a method for fast CdS-shell growth, which results in an abrupt core/shell boundary (no intentional or unintentional alloying), and a method for depositing a CdSexS1-x alloy layer of controlled composition onto the CdSe core prior to the growth of the CdS shell. Both types of QDs possess similar size-dependent single-exciton properties (photoluminescence energy, quantum yield, and decay lifetime). However the alloyed QDs show a significantly longer biexciton lifetime and up to a 3-fold increase in the biexciton emission efficiency compared to the reference samples. These results provide direct evidence that the structure of the QD interface has a significant effect on the rate of nonradiative Auger recombination, which dominates biexciton decay. We also observe that the energy gradient at the core-shell interface introduced by the alloyed layer accelerates hole trapping from the shell to the core states, which results in suppression of shell emission. This comparative study offers practical guidelines for controlling multicarrier Auger recombination without a significant effect on either spectral or dynamical properties of single excitons. The proposed strategy should be applicable to QDs of a variety of compositions (including, e.g., infrared-emitting QDs) and can benefit numerous applications from light emitting diodes and lasers to photodetectors and photovoltaics.
Chemical Reviews | 2016
Jeffrey M. Pietryga; Young Shin Park; Jaehoon Lim; Wan Ki Bae; Sergio Brovelli; Victor I. Klimov
The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.
Nano Letters | 2012
Allison M. Dennis; Benjamin D. Mangum; Andrei Piryatinski; Young Shin Park; Daniel C. Hannah; Joanna L. Casson; Darrick J. Williams; Richard D. Schaller; Han Htoon; Jennifer A. Hollingsworth
Nonblinking excitonic emission from near-infrared and type-II nanocrystal quantum dots (NQDs) is reported for the first time. To realize this unusual degree of stability at the single-dot level, novel InP/CdS core/shell NQDs were synthesized for a range of shell thicknesses (~1-11 monolayers of CdS). Ensemble spectroscopy measurements (photoluminescence peak position and radiative lifetimes) and electronic structure calculations established the transition from type-I to type-II band alignment in these heterostructured NQDs. More significantly, single-NQD studies revealed clear evidence for blinking suppression that was not strongly shell-thickness dependent, while photobleaching and biexciton lifetimes trended explicitly with extent of shelling. Specifically, very long biexciton lifetimes-up to >7 ns-were obtained for the thickest-shell structures, indicating dramatic suppression of nonradiative Auger recombination. This new system demonstrates that electronic structure and shell thickness can be employed together to effect control over key single-dot and ensemble NQD photophysical properties.
Nature | 2017
Fengjia Fan; Oleksandr Voznyy; Randy P. Sabatini; Kristopher T. Bicanic; Michael M. Adachi; James R. McBride; Kemar R. Reid; Young Shin Park; Xiyan Li; Ankit Jain; Rafael Quintero-Bermudez; Mayuran Saravanapavanantham; Min Liu; Marek Korkusinski; Pawel Hawrylak; Victor I. Klimov; Sandra J. Rosenthal; Sjoerd Hoogland; Edward H. Sargent
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states—the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
ACS Nano | 2016
Byeong Guk Jeong; Young Shin Park; Jun Hyuk Chang; Ikjun Cho; Jai Kyeong Kim; Heesuk Kim; Kookheon Char; Jinhan Cho; Victor I. Klimov; Philip Park; Doh C. Lee; Wan Ki Bae
Thick inorganic shells endow colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited due to the low photoluminescence quantum yield (PL QY ≤ 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ∼100% PL QY for SQW NCs with a thick CdS shell (≥5 nm). High PL QY of thick-shell SQW NCs is preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.
ACS Nano | 2015
Young Shin Park; Shaojun Guo; Nikolay S. Makarov; Victor I. Klimov
Nano Letters | 2014
Young Shin Park; Wan Ki Bae; Lazaro A. Padilha; Jeffrey M. Pietryga; Victor I. Klimov
ACS Nano | 2014
Young Shin Park; Wan Ki Bae; Jeffrey M. Pietryga; Victor I. Klimov
Nano Letters | 2015
Young Shin Park; Wan Ki Bae; Thomas I. Baker; Jaehoon Lim; Victor I. Klimov