Youngjo Jin
Sungkyunkwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youngjo Jin.
Advanced Materials | 2015
Youngjo Jin; Dong Hoon Keum; Sung-Jin An; Joonggyu Kim; Hyun Seok Lee; Young Hee Lee
A MoSe2 p-n diode with a van der Waals homojunction is demonstrated by stacking undoped (n-type) and Nb-doped (p-type) semiconducting MoSe2 synthesized by chemical vapor transport for Nb substitutional doping. The p-n diode reveals an ideality factor of ≈1.0 and a high external quantum efficiency (≈52%), which increases in response to light intensity due to the negligible recombination rate at the clean homojunction interface.
ACS Nano | 2016
Sang Hoon Chae; Youngjo Jin; Taesoo Kim; Dong Seob Chung; Hyunyeong Na; Honggi Nam; Hyun Kyu Kim; David Perello; Hye Yun Jeong; Thuc Hue Ly; Young Hee Lee
Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster.
ACS Nano | 2015
Si Young Lee; Dinh Loc Duong; Quoc An Vu; Youngjo Jin; Philip Kim; Young Hee Lee
We report a chemically conjugated bilayer graphene field effect transistor demonstrating a high on/off ratio without significant degradation of the on-current and mobility. This was realized by introducing environmentally stable benzyl viologen as an electron-donating group and atmospheric dopants as an electron-withdrawing group, which were used as dopants for the bottom and top of the bilayer graphene, respectively. A high mobility of ∼3100 cm(2) V(-1) s(-1) with a high on/off ratio of 76.1 was obtained at room temperature without significant degradation of the on-current. This is attributed to low charge scattering due to physisorbed dopants without provoking sp(3) structural disorders. By utilizing our band-gap-opened bilayer graphene, excellent nonvolatile memory switching behavior was demonstrated with a clear program/erase state by applying pulse gate bias. The initial program/erase current ratio of ∼34.5 was still retained at higher than 10 even after 10(4) s.
ACS Nano | 2017
Manh-Ha Doan; Youngjo Jin; Subash Adhikari; Sang Hyub Lee; Jiong Zhao; Seong Chu Lim; Young Hee Lee
Despite numerous studies on two-dimensional van der Waals heterostructures, a full understanding of the charge transport and photoinduced current mechanisms in these structures, in particular, associated with charge depletion/inversion layers at the interface remains elusive. Here, we investigate transport properties of a prototype multilayer MoS2/WSe2 heterojunction via a tunable charge inversion/depletion layer. A charge inversion layer was constructed at the surface of WSe2 due to its relatively low doping concentration compared to that of MoS2, which can be tuned by the back-gate bias. The depletion region was limited within a few nanometers in the MoS2 side, while charges are fully depleted on the whole WSe2 side, which are determined by Raman spectroscopy and transport measurements. Charge transport through the heterojunction was influenced by the presence of the inversion layer and involves two regimes of tunneling and recombination. Furthermore, photocurrent measurements clearly revealed recombination and space-charge-limited behaviors, similar to those of the heterostructures built from organic semiconductors. This contributes to research of various other types of heterostructures and can be further applied for electronic and optoelectronic devices.
ACS Nano | 2016
Hye Yun Jeong; Un Jeong Kim; Hyun Kyu Kim; Gang Hee Han; Hyangsook Lee; Min Su Kim; Youngjo Jin; Thuc Hue Ly; Si Young Lee; Young-Geun Roh; Won-Jae Joo; Sung Woo Hwang; Yeonsang Park; Young Hee Lee
Despite the direct band gap of monolayer transition metal dichalcogenides (TMDs), their optical gain remains limited because of the poor light absorption in atomically thin, layered materials. Most approaches to improve the optical gain of TMDs mainly involve modulation of the active materials or multilayer stacking. Here, we report a method to enhance the optical absorption and emission in MoS2 simply through the design of a nanostructured substrate. The substrate consisted of a dielectric nanofilm spacer (TiO2) and metal film. The overall photoluminescence intensity from monolayer MoS2 on the nanostructured substrate was engineered based on the TiO2 thickness and amplified by Fabry-Perot interference. In addition, the neutral exciton emission was selectively amplified by plasmonic excitations from the local field originating from the surface roughness of the metal film with spacer thicknesses of less than 10 nm. We further demonstrate that the quality factor of the device can also be engineered by selecting a spacer material with a different refractive index.
Physical Review Letters | 2015
Hyun Seok Lee; Min Su Kim; Youngjo Jin; Gang Hee Han; Young Hee Lee; Jeongyong Kim
Optoelectronics applications for transition-metal dichalcogenides are still limited by weak light absorption and their complex exciton modes are easily perturbed by varying excitation conditions because they are inherent in atomically thin layers. Here, we propose a method of selectively amplifying the primary exciton (A^{0}) among the exciton complexes in monolayer MoS_{2} via cyclic reexcitation of cavity-free exciton-coupled plasmon propagation. This was implemented by partially overlapping a Ag nanowire on a MoS_{2} monolayer separated by a thin SiO_{2} spacer. Exciton-coupled plasmons in the nanowire enhance the A^{0} radiation in MoS_{2}. The cumulative amplification of emission enhancement by cyclic plasmon traveling reaches approximately twentyfold selectively for the A^{0}, while excluding other B exciton and multiexciton by significantly reduced band filling, without oscillatory spectra implying plasmonic cavity effects.
Advanced Materials | 2017
Hye Yun Jeong; Youngjo Jin; Seok Joon Yun; Jiong Zhao; Jaeyoon Baik; Dong Hoon Keum; Hyun Seok Lee; Young Hee Lee
Single-crystalline monolayer hexagonal WS2 is segmented into alternating triangular domains: sulfur-vacancy (SV)-rich and tungsten-vacancy (WV)-rich domains. The WV-rich domain with deep-trap states reveals an electron-dedoping effect, and the electron mobility and photoluminescence are lower than those of the SV-rich domain with shallow-donor states by one order of magnitude. The vacancy-induced strain and doping effects are investigated via Raman and scanning photoelectron microscopy.
Nature Communications | 2016
Hyun Seok Lee; Dinh Hoa Luong; Min Su Kim; Youngjo Jin; Hyun Soo Kim; Seokjoon Yun; Young Hee Lee
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.
ACS Applied Materials & Interfaces | 2017
Byoung Hee Moon; Gang Hee Han; Hyun Kim; Homin Choi; Jung Jun Bae; Jaesu Kim; Youngjo Jin; Hye Yun Jeong; Min-Kyu Joo; Young Hee Lee; Seong Chu Lim
Although monolayer transition metal dichalcogenides (TMDs) exhibit superior optical and electrical characteristics, their use in digital switching devices is limited by incomplete understanding of the metal contact. Comparative studies of Au top and edge contacts with monolayer MoS2 reveal a temperature-dependent ideality factor and Schottky barrier height (SBH). The latter originates from inhomogeneities in MoS2 caused by defects, charge puddles, and grain boundaries, which cause local variation in the work function at Au-MoS2 junctions and thus different activation temperatures for thermionic emission. However, the effect of inhomogeneities due to impurities on the SBH varies with the junction structure. The weak Au-MoS2 interaction in the top contact, which yields a higher SBH and ideality factor, is more affected by inhomogeneities than the strong interaction in the edge contact. Observed differences in the SBH and ideality factor in different junction structures clarify how the SBH and inhomogeneities can be controlled in devices containing TMD materials.
Nanotechnology | 2017
Hyun Kyu Kim; Gang Hee Han; Seok Joon Yun; Jiong Zhao; Dong Hoon Keum; Hye Yun Jeong; Thuc Hue Ly; Youngjo Jin; Ji-Hoon Park; Byoung Hee Moon; S.-L. Kim; Young Hee Lee
Synthesis of monolayer transition metal dichalcogenides (TMDs) via chemical vapor deposition relies on several factors such as precursor, promoter, substrate, and surface treatment of substrate. Among them, the use of promoter is crucial for obtaining uniform and large-area monolayer TMDs. Although promoters have been speculated to enhance adhesion of precursors to the substrate, their precise role in the growth mechanism has rarely been discussed. Here, we report the role of alkali metal promoter in growing monolayer TMDs. The growth occurred via the formation of sodium metal oxides which prevent the evaporation of metal precursor. Furthermore, the silicon oxide substrate helped to decrease the Gibbs free energy by forming sodium silicon oxide compounds. The resulting sodium metal oxide was anchored within such concavities created by corrosion of silicon oxide. Consequently, the wettability of the precursors to silicon oxide was improved, leading to enhance lateral growth of monolayer TMDs.