Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yousuke Sawa is active.

Publication


Featured researches published by Yousuke Sawa.


Journal of Geophysical Research | 2010

CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements

F. Chevallier; Philippe Ciais; T. J. Conway; Tuula Aalto; Bruce E. Anderson; P. Bousquet; E.-G. Brunke; L. Ciattaglia; Y. Esaki; M. Fröhlich; Antony Gomez; A. J. Gomez-Pelaez; L. Haszpra; P. B. Krummel; R. L. Langenfelds; Markus Leuenberger; Toshinobu Machida; Fabienne Maignan; Hidekazu Matsueda; J. A. Morguí; Hitoshi Mukai; Takakiyo Nakazawa; Philippe Peylin; M. Ramonet; L. Rivier; Yousuke Sawa; Martina Schmidt; L. P. Steele; S. A. Vay; Alex Vermeulen

This paper documents a global Bayesian variational inversion of CO2 surface fluxes during the period 1988-2008. Weekly fluxes are estimated on a 3.75 degrees x 2.5 degrees (longitude-latitude) grid throughout the 21 years. The assimilated observations include 128 station records from three large data sets of surface CO2 mixing ratio measurements. A Monte Carlo approach rigorously quantifies the theoretical uncertainty of the inverted fluxes at various space and time scales, which is particularly important for proper interpretation of the inverted fluxes. Fluxes are evaluated indirectly against two independent CO2 vertical profile data sets constructed from aircraft measurements in the boundary layer and in the free troposphere. The skill of the inversion is evaluated by the improvement brought over a simple benchmark flux estimation based on the observed atmospheric growth rate. Our error analysis indicates that the carbon budget from the inversion should be more accurate than the a priori carbon budget by 20% to 60% for terrestrial fluxes aggregated at the scale of subcontinental regions in the Northern Hemisphere and over a year, but the inversion cannot clearly distinguish between the regional carbon budgets within a continent. On the basis of the independent observations, the inversion is seen to improve the fluxes compared to the benchmark: the atmospheric simulation of CO2 with the Bayesian inversion method is better by about 1 ppm than the benchmark in the free troposphere, despite possible systematic transport errors. The inversion achieves this improvement by changing the regional fluxes over land at the seasonal and at the interannual time scales. (Less)


Journal of Geophysical Research | 2007

Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia

Teruyuki Nakajima; Soon Chang Yoon; V. Ramanathan; Guang Yu Shi; Toshihiko Takemura; Akiko Higurashi; Tamio Takamura; Kazuma Aoki; Byung-Ju Sohn; Sang-Woo Kim; Haruo Tsuruta; Nobuo Sugimoto; Atsushi Shimizu; Hiroshi Tanimoto; Yousuke Sawa; Neng-Huei Lin; Chung Te Lee; Daisuke Goto; N. A. J. Schutgens

2005 which is smaller in magnitude than in the APMEX region, mainly because of large cloud fraction in this region (0.70 at Gosan versus 0.51 at Hanimadhoo in the ISCCP total cloud fraction). We suggest there may be an underestimation of the forcing due to overestimation of the simulated cloudiness and aerosol scale height. On the other hand, the possible error in the simulated surface albedo may cause an overestimation of the magnitude of the forcing over the land area. We also propose simple formulae for shortwave radiative forcing to understand the role of aerosol parameters and surface condition to determine the aerosol forcing. Such simple formulae are useful to check the consistency among the observed quantities.


Geophysical Research Letters | 2011

Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column

F. Chevallier; Nicholas M Deutscher; T. J. Conway; P. Ciais; L. Ciattaglia; S. Dohe; M. Fröhlich; Angel J. Gomez-Pelaez; David W. T. Griffith; F. Hase; L. Haszpra; P. B. Krummel; E. Kyrö; C. Labuschagne; R. L. Langenfelds; Toshinobu Machida; Fabienne Maignan; Hidekazu Matsueda; Isamu Morino; Justus Notholt; M. Ramonet; Yousuke Sawa; Martina Schmidt; Vanessa Sherlock; Paul Steele; Kimberly Strong; Ralf Sussmann; Paul O. Wennberg; S. C. Wofsy; Douglas E. J. Worthy

We present the first estimate of the global distribution of CO_2 surface fluxes from 14 stations of the Total Carbon Column Observing Network (TCCON). The evaluation of this inversion is based on 1) comparison with the fluxes from a classical inversion of surface air-sample-measurements, and 2) comparison of CO_2 mixing ratios calculated from the inverted fluxes with independent aircraft measurements made during the two years analyzed here, 2009 and 2010. The former test shows similar seasonal cycles in the northern hemisphere and consistent regional carbon budgets between inversions from the two datasets, even though the TCCON inversion appears to be less precise than the classical inversion. The latter test confirms that the TCCON inversion has improved the quality (i.e., reduced the uncertainty) of the surface fluxes compared to the assumed or prior fluxes. The consistency between the surface-air-sample-based and the TCCON-based inversions despite remaining flaws in transport models opens the possibility of increased accuracy and robustness of flux inversions based on the combination of both data sources and confirms the usefulness of space-borne monitoring of the CO_2 column.


Journal of Geophysical Research | 2012

Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements

Yosuke Niwa; Toshinobu Machida; Yousuke Sawa; Hidekazu Matsueda; Tanja J. Schuck; Carl A. M. Brenninkmeijer; Ryoichi Imasu; Masaki Satoh

[1] Because very few measurements of atmospheric carbon dioxide (CO2) are available in the tropics, estimates of surface CO2 fluxes in tropical regions are beset with considerable uncertainties. To improve estimates of tropical terrestrial fluxes, atmospheric CO2 inversion was performed using passenger aircraft based measurements of the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project in addition to the surface measurement data set of GLOBALVIEW–CO2. Regional monthly fluxes at the earth’s surface were estimated using the Bayesian synthesis approach focusing on the period 2006–2008 using the Nonhydrostatic Icosahedral Atmospheric Model-based Transport Model (NICAM-TM). By adding the aircraft to the surface data, the posterior flux errors were greatly reduced; specifically, error reductions of up to 64% were found for tropical Asia regions. This strong impact is closely related to efficient vertical transport in the tropics. The optimized surface fluxes using the CONTRAIL data were evaluated by comparing the simulated atmospheric CO2 distributions with independent aircraft measurements of the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) project. The inversion with the CONTRAIL data yields the global carbon sequestration rates of 2.22 � 0.28 Pg C yr � 1 for the terrestrial biosphere and 2.24 � 0.27 Pg C yr � 1 for the oceans (the both are adjusted by riverine input of CO2). For the first time the CONTRAIL CO2 measurements were used in an inversion system to identify the areas of greatest impact in terms of reducing flux uncertainties.


Geophysical Research Letters | 1999

Tropospheric carbon monoxide and hydrogen measurements over Kalimantan in Indonesia and northern Australia during October, 1997

Yousuke Sawa; Hidekazu Matsueda; Yukitomo Tsutsumi; Jorgen B. Jensen; Hisayuki Y. Inoue; Yukio Makino

During the PACE-5 campaign over Australia and Indonesia in October 1997, we used an aircraft to measure carbon monoxide (CO) and hydrogen (H2). Latitudinal distributions of CO and H2 clearly showed a large increase from northern Australia to Kalimantan in Indonesia. Elevated CO levels over northern Australia were observed only in the smoke plumes of savanna fires. A thick smoke haze from forest fires over Kalimantan contained very high CO mixing ratios of 3 to 9 ppm. These enhanced CO mixing ratios correlated well with increased concentrations of H2, nitrogen oxides (NOx), and aerosols. Emission ratios from biomass burning in Kalimantan ranged 0.06 0.1 for H2/CO (ppb/ppb), 0.0002 to 0.0005 for NOx/CO (ppb/ppb), and 0.43 to 1.0 for number of aerosols/CO (cm−3/ppb). These values were much lower than emission ratios in northern Australia. This difference suggests that the biomass burning in Indonesia was intense and that, due to a strong El Nino event, an unique composition of trace gases was formed in the smoke haze.


Journal of Geophysical Research | 2012

Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft

Tanja J. Schuck; Kentaro Ishijima; Prabir K. Patra; A. K. Baker; Toshinobu Machida; Hidekazu Matsueda; Yousuke Sawa; Taku Umezawa; Carl A. M. Brenninkmeijer; J. Lelieveld

Received 29 May 2012; revised 8 August 2012; accepted 16 August 2012; published 4 October 2012. [1] We investigate the upper tropospheric distribution of methane (CH4) at low latitudes based on the analysis of air samples collected from aboard passenger aircraft. The distribution of CH4 exhibits spatial and seasonal differences, such as the pronounced seasonal cycles over tropical Asia and elevated mixing ratios over central Africa. Over Africa, the correlations of methane, ethane, and acetylene with carbon monoxide indicate that these high mixing ratios originate from biomass burning as well as from biogenic sources. Upper tropospheric mixing ratios of CH4were modeled using a chemistry transport model. The simulation captures the large-scale features of the distributions along different flight routes, but discrepancies occur in some regions. Over Africa, where emissions are not well constrained, the model predicts a too steep interhemispheric gradient. During summer, efficient convective vertical transport and enhanced emissions give rise to a large-scale CH4 maximum in the upper troposphere over subtropical Asia. This seasonal (monsoonal) cycle is analyzed with a tagged tracer simulation. The model confirms that in this region convection links upper tropospheric mixing ratios to regional sources on the Indian subcontinent, subtropical East Asia, and Southeast Asia. This type of aircraft data can therefore provide information about surface fluxes.


Geophysical Research Letters | 1999

Aircraft measurements of ozone, NOx, CO, and aerosol concentrations in biomass burning smoke over Indonesia and Australia in October 1997: Depleted ozone layer at low altitude over Indonesia

Yukitomo Tsutsumi; Yousuke Sawa; Yukio Makino; Jorgen B. Jensen; John L. Gras; Brian F. Ryan; Sri Diharto; Hery Harjanto

The 1997 El Nino unfolded as one of the most sever El Nino Southern Oscillation (ENSO) events in this century and it coincided with massive biomass burning in the equatorial western Pacific region. To assess the influence on the atmosphere, aircraft observations of trace gases and aerosol were conducted over Kalimantan in Indonesia and Australia. Over Kalimantan in Indonesia, high concentrations of O3, NOx, CO, and aerosols were observed during the flight. Although the aerosol and NOx decreased with altitude, the O3 had the maximum concentration (80.5 ppbv) in the middle layer of the smoke haze and recorded very low concentrations (∼20 ppbv) in the lower smoke layer. This feature was not observed in the Australian smoke. We proposed several hypotheses for the low O3 concentration at low levels over Kalimantan. The most likely are lack of solar radiation and losses at the surface of aerosol particles.


Geophysical Research Letters | 2014

The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI

Sourish Basu; M. Krol; A. Butz; Cathy Clerbaux; Yousuke Sawa; Toshinobu Machida; Hidekazu Matsueda; Christian Frankenberg; Otto P. Hasekamp; I. Aben

We estimate the CO2 flux over Tropical Asia in 2009, 2010, and 2011 using Greenhouse Gases Observing Satellite (GOSAT) total column CO2(XCO2) and in situ measurements of CO2. Compared to flux estimates from assimilating surface measurements of CO2, GOSAT XCO2 estimates a more dynamic seasonal cycle and a large source in March–May 2010. The more dynamic seasonal cycle is consistent with earlier work by Patra et al. (2011), and the enhanced 2010 source is supported by independent upper air CO2 measurements from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. Using Infrared Atmospheric Sounding Interferometer (IASI) measurements of total column CO (XCO), we show that biomass burning CO2 can explain neither the dynamic seasonal cycle nor the 2010 source. We conclude that both features must come from the terrestrial biosphere. In particular, the 2010 source points to biosphere response to above-average temperatures that year.


Tellus B | 2002

Long-range transport of carbon monoxide from tropical ground to upper troposphere: a case study for South East Asia in October 1997

Shoichi Taguchi; Hidekazu Matsueda; Hisayuki Y. Inoue; Yousuke Sawa

Abstract High concentrations of carbon monoxide (CO) were observed in October 1997 at the upper troposphere of the western tropical Pacific. Transport from the potential sources of CO due to biomass burnings in the tropics was investigated by using a global chemical transport model (CTM) driven by assimilated meteorological data provided from European Centre for Medium-Range Weather Forecasts (ECMWF). A CTM evaluation simulation using water vapor showed that the amount of vertical transport of moisture by large-scale flow was consistent with the precipitation predicted at the convective zone. A series of CTM simulations using 10-day emission periods of an artificial material with lifetime of 60 days indicated that vertical lifting of surface air at the Indonesian archipelago occurred in the concentrated convections west of Sumatra Island. No evidence was found that CO from the Amazon region or Africa significantly contributed to high concentrations in the western tropical Pacific. Transport formed a large-scale anvil below the tropopause by rapid vertical transport and by divergence flow. The average time required for the transport from Kalimantan and Sumatra Island to the point of high CO concentration was about 15 days. High concentrations at an altitude of 10 km in the Southern Hemisphere were transported by large-scale subsidence from the upper tropospheric maximum, which was presumably produced from the sources at Kalimantan and Sumatra Island. Estimated emissions of CO in September and October from Kalimantan and Sumatra were substantially larger than the previous estimates. Omission of chemical reaction was a possible problem for the overestimate, but not significant. The possible problems in the transport were incorrect CTM transport due to insufficient horizontal (2.5×2.5°) and vertical resolution of the CTM, and to inaccuracy in the wind fields at the upper part of the troposphere and a divergent flow pattern in the upper part of the troposphere.


Tellus B | 2004

Aircraft Observation of CO2, CO, O3 and H2 over the North Pacific during the PACE‐7 Campaign

Yousuke Sawa; Hidekazu Matsueda; Yukio Makino; Hisayuki Y. Inoue; Shohei Murayama; M. Hirota; Yukitomo Tsutsumi; Yuji Zaizen; Miwako Ikegami; Kikuo Okada

Aircraft observation under the Pacific Atmospheric Chemistry Experiment (PACE) program was performed from February 13 to 21, 2000 to examine in detail the distributions of CO2 in the free troposphere between 5 and 11 km. Continuous measurements of CO2mixing ratios were made using an on-board measuring system over the northern North Pacific between Nagoya, Japan and Anchorage, Alaska, and the western North Pacific between Nagoya and Saipan. Other trace gases, such as CO and O3, were also observed using continuous measuring systems at the same time. CO2 over the northern Pacific (35¼N and higher) showed highly variable mixing ratios, ranging from 374 ppm in the upper troposphere to 366 ppm in the lowermost stratosphere. This highly variable distribution of CO2 was quite similar to that of CO, but the relationship between CO2 and O3 showed a strong negative correlation. These results indicated that the exchange process between the stratosphere and the troposphere significantly influences the large CO2variation. On the other hand, the CO2 over the western North Pacific to the south of Japan showed no significant variation in the upper troposphere at 11 km but a relatively larger variability at 5 km. The CO2 enhancement at lower altitudes coincided with the CO elevation due to the intrusion of a polluted air mass. Trajectory analysis indicated that the Asian continental outflow perturbed the CO2 distributions over the western Pacific. Very low mixing ratios of O3 of less than 20 ppb were distributed in the latitude band of 15–30¼N at 11 km, reflecting the effects of transport from the equatorial region.

Collaboration


Dive into the Yousuke Sawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshinobu Machida

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Tsuboi

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isamu Morino

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prabir K. Patra

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shohei Murayama

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Osamu Uchino

National Institute for Environmental Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge