Yu Kitaoka
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu Kitaoka.
Experimental Physiology | 2011
Yu Kitaoka; Hiroyuki Masuda; Kazutaka Mukai; Atsushi Hiraga; Tohru Takemasa; Hideo Hatta
The aim of this study was to investigate the effects of training and detraining on the monocarboxylate transporter (MCT) 1 and MCT4 levels in the gluteus medius muscle of Thoroughbred horses. Twelve Thoroughbred horses were used for the analysis. For 18 weeks, all the horses underwent high‐intensity training (HIT), with running at 90–110% maximal oxygen consumption ( ) for 3 min, 5 days week−1. Thereafter, the horses either underwent detraining for 6 weeks by either 3 min of moderate‐intensity training (MIT) at 70% , 5 days week−1 (HIT‐MIT group) or stall rest (HIT‐SR group). The horses underwent an incremental exercise test, was measured and resting muscle samples were obtained from the middle gluteus muscle at 0, 18 and 24 weeks. The content of MCT1 and MCT4 proteins increased after 18 weeks of HIT. At the end of this period, an increase was noted in the citrate synthase activity, while phosphofructokinase activity remained unchanged. After 6 weeks of detraining, all these indexes returned to the pretraining levels in the HIT‐SR group. However, in the HIT‐MIT group, the increase in the MCT1 protein content and citrate synthase activity was maintained after 6 weeks of MIT, while the MCT4 protein content decreased to the pretraining value. These results suggest that the content of MCT1 and MCT4 proteins increases after HIT in Thoroughbred horses. In addition, the increase in the MCT1 protein content and oxidative capacity induced by HIT can be maintained by MIT of 70% , but the increase in the MCT4 protein content cannot be maintained by MIT.
Scientific Reports | 2016
Riki Ogasawara; Satoshi Fujita; Troy A. Hornberger; Yu Kitaoka; Yuhei Makanae; Koichi Nakazato; Ishii Naokata
Resistance exercise (RE) activates signalling by the mammalian target of rapamycin (mTOR), and it has been suggested that rapamycin-sensitive mTOR signalling controls RE-induced changes in protein synthesis, ribosome biogenesis, autophagy, and the expression of peroxisome proliferator gamma coactivator 1 alpha (PGC-1α). However, direct evidence to support the aforementioned relationships is lacking. Therefore, in this study, we investigated the role of rapamycin-sensitive mTOR in the RE-induced activation of muscle protein synthesis, ribosome biogenesis, PGC-1α expression and hypertrophy. The results indicated that the inhibition of rapamycin-sensitive mTOR could prevent the induction of ribosome biogenesis by RE, but it only partially inhibited the activation of muscle protein synthesis. Likewise, the inhibition of rapamycin-sensitive mTOR only partially blocked the hypertrophic effects of chronic RE. Furthermore, both acute and chronic RE promoted an increase in PGC-1α expression and these alterations were not affected by the inhibition of rapamycin-sensitive mTOR. Combined, the results from this study not only establish that rapamycin-sensitive mTOR plays an important role in the RE-induced activation of protein synthesis and the induction of hypertrophy, but they also demonstrate that additional (rapamycin-sensitive mTOR-independent) mechanisms contribute to these fundamentally important events.
Applied Physiology, Nutrition, and Metabolism | 2013
Daisuke Hoshino; Yuko Yoshida; Yu Kitaoka; Hideo Hatta; Arend Bonen
High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30-55 m·min(-1)), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.
The Journal of Physiology | 2015
Yuki Tamura; Yu Kitaoka; Yutaka Matsunaga; Daisuke Hoshino; Hideo Hatta
Traumatic nerve injury or nerve disease leads to denervation and severe muscle atrophy. Recent evidence shows that mitochondrial loss could be a key mediator of skeletal muscle atrophy. Here, we show that daily heat stress treatment rescues denervation‐induced loss of mitochondria and concomitant muscle atrophy. We also found that denervation‐activated autophagy‐dependent mitochondrial clearance (mitophagy) was suppressed by daily heat stress treatment. The molecular basis of this observation is explained by our results showing that heat stress treatment attenuates the increase of key proteins that regulate the tagging step for mitochondrial clearance and the intermediate step of autophagosome formation in denervated muscle. These findings contribute to the better understanding of mitochondrial quality control in denervated muscle from a translational perspective and provide a mechanism behind the attenuation of muscle wasting by heat stress.
American Journal of Veterinary Research | 2013
Yu Kitaoka; Yukari Endo; Kazutaka Mukai; Hiroko Aida; Atsushi Hiraga; Tohru Takemasa; Hideo Hatta
OBJECTIVE To evaluate the effects of a single incremental exercise test (IET) on mRNA expression and protein content of monocarboxylate transporter (MCT) 1 and MCT4 in the gluteus medius muscle of Thoroughbreds. ANIMALS 12 Thoroughbreds (6 males and 6 females; age, 3 to 4 years). PROCEDURES Horses underwent an IET before and after 18 weeks of high-intensity exercise training (HIT). Horses were exercised at 90% of maximal oxygen consumption for 3 minutes during the initial 10 weeks of HIT and 110% of maximal oxygen consumption for 3 minutes during the last 8 weeks of HIT. Gluteus medius muscle biopsy specimens were obtained from horses before (baseline), immediately after, and at 3, 6, and 24 hours after the IET. RESULTS Expression of MCT1 and MCT4 mRNA was upregulated at 3 and 6 hours after the IET in muscle specimens obtained from horses prior to HIT (untrained horses) and at 6 hours after the IET in muscle specimens obtained from horses after HIT (trained horses). For both untrained and trained horses, MCT1 and MCT4 protein contents were increased at 6 hours after the IET and did not differ at 24 hours after the IET, compared with those at baseline. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that a single IET resulted in transient increases in MCT1 and MCT4 mRNA expression and protein content in untrained and trained horses. These results may be important for the elucidation of exercise-induced alterations in lactate metabolism.
Journal of Applied Physiology | 2015
Takaaki Abe; Yu Kitaoka; Dale M. Kikuchi; Kohei Takeda; Osamu Numata; Tohru Takemasa
It is known that repeated bouts of high-intensity interval training (HIIT) lead to enhanced levels of glycolysis, glycogenesis, and lactate transport proteins in skeletal muscle; however, little is known about the molecular mechanisms underlying these adaptations. To decipher the mechanism leading to improvement of skeletal muscle glycolytic capacity associated with HIIT, we examined the role of hypoxia-inducible factor-1α (Hif-1α), the major transcription factor regulating the expression of genes related to anaerobic metabolism, in the adaptation to HIIT. First, we induced Hif-1α accumulation using ethyl 3,4-dihydroxybenzoate (EDHB) to assess the potential role of Hif-1α in skeletal muscle. Treatment with EDHB significantly increased the protein levels of Hif-1α in gastrocnemius muscles, accompanied by elevated expression of genes related to glycolysis, glycogenesis, and lactate transport. Daily administration of EDHB for 1 wk resulted in elevated glycolytic enzyme activity in gastrocnemius muscles. Second, we examined whether a single bout of HIIT could induce Hif-1α protein accumulation and subsequent increase in the expression of genes related to anaerobic metabolism in skeletal muscle. We observed that the protein levels of Hif-1α and expression of the target genes were elevated 3 h after an acute bout of HIIT in gastrocnemius muscles. Last, we examined the effects of long-term HIIT. We found that long-term HIIT increased the basal levels of Hif-1α as well as the glycolytic capacity in gastrocnemius muscles. Our results suggest that Hif-1α is a key regulator in the metabolic adaptation to high-intensity training.
American Journal of Veterinary Research | 2011
Yu Kitaoka; Daisuke Hoshino; Kazutaka Mukai; Atsushi Hiraga; Tohru Takemasa; Hideo Hatta
OBJECTIVE To examine the changes in monocarboxylate transporter (MCT) 1 and MCT4 content and in indicators of energy metabolism in the gluteus medius muscle (GMM) of Thoroughbreds during growth. ANIMALS 6 Thoroughbreds (3 males and 3 females). PROCEDURES Samples of GMM were obtained when horses were 2, 6, 12, and 24 months old. Muscle proteins were separated via SDS-PAGE; amounts of MCT1 and MCT4 and peroxisome proliferator-activated receptor-γ coactivator-1α content were determined by use of western blotting. Muscle activities of phosphofructokinase and citrate synthase were measured biochemically; lactate dehydrogenase isoenzymes were separated by agarose gel electrophoresis and quantified. RESULTS Compared with findings when horses were 2 months old, MCT1 protein content in GMM samples obtained when the horses were 24 months old was significantly higher; however, MCT4 protein content remained unchanged throughout the study period. Peroxisome proliferator-activated receptor-γ coactivator-1α content was significantly increased at 24 months of age and citrate synthase activity was increased at 6 and 24 months of age, compared with findings at 2 months. Phosphofructokinase activity remained unaltered during growth. The percentage contributions of lactate dehydrogenase 1 and 2 isoenzymes to the total amount of all 5 isoenzymes at 12 and 24 months of age were significantly higher than those at 2 months of age. CONCLUSIONS AND CLINICAL RELEVANCE Changes in protein contents of MCTs and the lactate dehydrogenase isoenzyme profile in GMM samples suggested that lactate usage capacity increases with growth and is accompanied by an increase in the oxidative capacity in Thoroughbreds.
Applied Physiology, Nutrition, and Metabolism | 2016
Yu Kitaoka; Kohei Takeda; Yuki Tamura; Hideo Hatta
To examine the potential role of lactate as a signalling molecule in skeletal muscle, we performed global gene expression analysis of the mouse gastrocnemius muscle, 3 h after lactate administration using the Affymetrix GeneChip system (Affymetrix, Santa Clara, Calif., USA). Among the top 15 genes with the largest fold change, increased expression of Ppargc1a, Pdk4, and Ucp3 was confirmed using real-time quantitative polymerase chain reaction. Our findings suggest that lactate serves as a signal for upregulating genes related to mitochondrial function.
Applied Physiology, Nutrition, and Metabolism | 2015
Yu Kitaoka; Riki Ogasawara; Yuki Tamura; Satoshi Fujita; Hideo Hatta
It is well known that resistance exercise increases muscle protein synthesis and muscle strength. However, little is known about the effect of resistance exercise on mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria exist as dynamic networks that are continuously remodeling through fusion and fission. The purpose of this study was to investigate the effect of acute and chronic resistance exercise, which induces muscle hypertrophy, on the expression of proteins related to mitochondrial dynamics in rat skeletal muscle. Resistance exercise consisted of maximum isometric contraction, which was induced by percutaneous electrical stimulation of the gastrocnemius muscle. Our results revealed no change in levels of proteins that regulate mitochondrial fission (Fis1 and Drp1) or fusion (Opa1, Mfn1, and Mfn2) over the 24-h period following acute resistance exercise. Phosphorylation of Drp1 at Ser616 was increased immediately after exercise (P < 0.01). Four weeks of resistance training (3 times/week) increased Mfn1 (P < 0.01), Mfn2 (P < 0.05), and Opa1 (P < 0.01) protein levels without altering mitochondrial oxidative phosphorylation proteins. These observations suggest that resistance exercise has little effect on mitochondrial biogenesis but alters the expression of proteins involved in mitochondrial fusion and fission, which may contribute to mitochondrial quality control and improved mitochondrial function.
American Journal of Veterinary Research | 2012
Yu Kitaoka; Kazutaka Mukai; Hiroko Aida; Atsushi Hiraga; Hiroyuki Masuda; Tohru Takemasa; Hideo Hatta
OBJECTIVE To investigate the effects of high-intensity training (HIT) on carbohydrate and fat metabolism in Thoroughbreds. ANIMALS 12 Thoroughbreds (3 to 4 years old; 6 males and 6 females). PROCEDURES Horses performed HIT for 18 weeks. They ran at 90% or 110% of maximal oxygen consumption ((V)O(2max)) for 3 minutes (5 d/wk) and were subjected to incremental exercise testing (IET) before and after training. Blood samples were collected during IET, and muscle samples were obtained from the gluteus medius muscle immediately after IET. Phosphofructokinase, citrate synthase, and β-3-hydroxyacyl CoA dehydrogenase (β-HAD) activities were measured to determine glycolytic and oxidative capacities. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and fatty acid translocase (FAT/CD36) protein contents were detected via western blotting. Metabolome analysis was performed via capillary electrophoresis-electrospray ionization mass spectrometry to measure substrate concentrations related to carbohydrate metabolism. RESULTS Peak speed during IET and (V)O(2max) increased after HIT. Activities of citrate synthase and β-HAD increased after HIT, whereas phosphofructokinase activity remained unchanged. The PGC-1α and FAT/CD36 protein contents increased after HIT, but plasma lactate concentration and the respiratory exchange ratio decreased after HIT. The plasma free fatty acid concentration increased after HIT, whereas the glucose concentration was not altered. Fructose 1,6-diphosphate, phosphoenolpyruvate, and pyruvate concentrations decreased after HIT. CONCLUSIONS AND CLINICAL RELEVANCE HIT caused an increase in oxidative capacity in equine muscle, which suggested that there was a decreased reliance on carbohydrate utilization and a concomitant shift toward fatty acid utilization during intensive exercise.