Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Lun Chueh is active.

Publication


Featured researches published by Yu-Lun Chueh.


Nature Materials | 2009

Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates

Zhiyong Fan; Haleh Razavi; Jae-won Do; Aimee Moriwaki; Onur Ergen; Yu-Lun Chueh; Paul W. Leu; Johnny C. Ho; Toshitake Takahashi; Lothar A. Reichertz; Steven L. Neale; Kyoungsik Yu; Ming C. Wu; Joel W. Ager; Ali Javey

Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed. Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies. In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars.


Scientific Reports | 2015

Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures

Wenjing Zhang; Chih-Piao Chuu; Jing-Kai Huang; Chang-Hsiao Chen; Meng-Lin Tsai; Yung-Huang Chang; Chi-Te Liang; Yu-Ze Chen; Yu-Lun Chueh; Jr-Hau He; M. Y. Chou; Lain-Jong Li

Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as light- sensitive. Here we show that a large-area and continuous MoS2 monolayer is achievable using a CVD method and graphene is transferable onto MoS2. We demonstrate that a photodetector based on the graphene/MoS2 heterostructure is able to provide a high photogain greater than 108. Our experiments show that the electron-hole pairs are produced in the MoS2 layer after light absorption and subsequently separated across the layers. Contradictory to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS2 due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, resulting in a tuneable photoresponsivity.


ACS Nano | 2012

Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems

Xu Xiao; Tianqi Li; Peihua Yang; Huanyu Jin; Weijian Ni; Wenhui Zhan; Xianghui Zhang; Yuanzhi Cao; Junwen Zhong; Li Gong; Wen-Chun Yen; Wenjie Mai; Jian Chen; Kaifu Huo; Yu-Lun Chueh; Zhong Lin Wang; Jun Zhou

All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.


Nano Letters | 2009

Diameter-Dependent Electron Mobility of InAs Nanowires

Alexandra C. Ford; Johnny C. Ho; Yu-Lun Chueh; Yu-Chih Tseng; Zhiyong Fan; Jing Guo; Jeffrey Bokor; Ali Javey

Temperature-dependent I-V and C-V spectroscopy of single InAs nanowire field-effect transistors were utilized to directly shed light on the intrinsic electron transport properties as a function of nanowire radius. From C-V characterizations, the densities of thermally activated fixed charges and trap states on the surface of untreated (i.e., without any surface functionalization) nanowires are investigated while enabling the accurate measurement of the gate oxide capacitance, therefore leading to the direct assessment of the field-effect mobility for electrons. The field-effect mobility is found to monotonically decrease as the radius is reduced to <10 nm, with the low temperature transport data clearly highlighting the drastic impact of the surface roughness scattering on the mobility degradation for miniaturized nanowires. More generally, the approach presented here may serve as a versatile and powerful platform for in-depth characterization of nanoscale, electronic materials.


Nano Letters | 2010

Ordered arrays of dual-diameter nanopillars for maximized optical absorption.

Zhiyong Fan; Rehan Kapadia; Paul W. Leu; Xiaobo Zhang; Yu-Lun Chueh; Kuniharu Takei; Kyoungsik Yu; Arash Jamshidi; Asghar A. Rathore; Daniel J. Ruebusch; Ming C. Wu; Ali Javey

Optical properties of highly ordered Ge nanopillar arrays are tuned through shape and geometry control to achieve the optimal absorption efficiency. Increasing the Ge materials filling ratio is shown to increase the reflectance while simultaneously decreasing the transmittance, with the absorbance showing a strong diameter dependency. To enhance the broad band optical absorption efficiency, a novel dual-diameter nanopillar structure is presented, with a small diameter tip for minimal reflectance and a large diameter base for maximal effective absorption coefficient. The enabled single-crystalline absorber material with a thickness of only 2 μm exhibits an impressive absorbance of ∼99% over wavelengths, λ = 300-900 nm. These results enable a viable and convenient route toward shape-controlled nanopillar-based high-performance photonic devices.


Applied Physics Letters | 2010

Metal-catalyzed crystallization of amorphous carbon to graphene

Maxwell Zheng; Kuniharu Takei; Benjamin Hsia; Hui Fang; Xiaobo Zhang; Nicola Ferralis; Hyunhyub Ko; Yu-Lun Chueh; Yuegang Zhang; Roya Maboudian; Ali Javey

Metal-catalyzed crystallization of amorphous carbon to graphene by thermal annealing is demonstrated. In this “limited source” process scheme, the thickness of the precipitated graphene is directly controlled by the thickness of the initial amorphous carbon layer. This is in contrast to chemical vapor deposition processes, where the carbon source is virtually unlimited and controlling the number of graphene layers depends on the tight control over a number of deposition parameters. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as chemical vapor deposition. The ability to synthesize graphene sheets with tunable thickness over large areas presents an important progress toward their eventual integration for various technological applications.


ACS Nano | 2015

Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors

Tania Roy; Mahmut Tosun; Xi Cao; Hui Fang; Der-Hsien Lien; Peida Zhao; Yu-Ze Chen; Yu-Lun Chueh; Jing Guo; Ali Javey

Two-dimensional layered semiconductors present a promising material platform for band-to-band-tunneling devices given their homogeneous band edge steepness due to their atomically flat thickness. Here, we experimentally demonstrate interlayer band-to-band tunneling in vertical MoS2/WSe2 van der Waals (vdW) heterostructures using a dual-gate device architecture. The electric potential and carrier concentration of MoS2 and WSe2 layers are independently controlled by the two symmetric gates. The same device can be gate modulated to behave as either an Esaki diode with negative differential resistance, a backward diode with large reverse bias tunneling current, or a forward rectifying diode with low reverse bias current. Notably, a high gate coupling efficiency of ∼80% is obtained for tuning the interlayer band alignments, arising from weak electrostatic screening by the atomically thin layers. This work presents an advance in the fundamental understanding of the interlayer coupling and electron tunneling in semiconductor vdW heterostructures with important implications toward the design of atomically thin tunnel transistors.


Angewandte Chemie | 2012

p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production†

Min Hyung Lee; Kuniharu Takei; Junjun Zhang; Rehan Kapadia; Maxwell Zheng; Yu-Ze Chen; Junghyo Nah; Tyler S. Matthews; Yu-Lun Chueh; Joel W. Ager; Ali Javey

Water splitting by using sunlight for the production of hydrogen yields a storable product, which can be used as a fuel. There is considerable research into H2 generation, namely the reduction of protons to H2 in aqueous solution using semiconductor photocathodes. To maximize the photoelectrochemical (PEC) performance, the selection of the active materials and device configurations should be carefully considered. First, the short-circuit current density (Jsc) should be maximized by choosing materials with high optical absorption coefficients and low carrier recombination rates, both in the bulk and at the surface. The reflectance should be minimized by using surface nanotexturing to further improve light absorption. The onset potential (Eos) of the PEC device versus the reversible H /H2 redox potential should be maximized. Finally, the surface energy needs to be controlled to minimize the accumulation of gas bubbles on the surface of the photoelectrode. Light absorbers with band gaps in the range of 1.1–1.7 eV provide both a good match to the terrestrial solar spectrum and a significant fraction of the 1.23 eV free energy required to split water. Overpotentials associated with the electron transfer to (solvated) protons in aqueous solution should be minimized by improving carrier transport from semiconductor to electrolyte by decorating the semiconductor with cocatalysts, tuning band edges, and decreasing contact resistance. p-Type Si has been extensively investigated as a photocathode for photochemical hydrogen production. Planar Si has relatively low short-circuit current densities under AM1.5 G illumination, approximately 10 mAcm 2 (reference [9]), compared to what can be achieved in a pn junction solar cell (> 35 mAcm ). Nanostructuring and incorporation of cocatalysts have been used to raise the short-circuit current density to over 30 mAcm . A recent study using np Si radial junction microwires reported an Eos value of 0.54 V and an Jsc value of 15 mA, leading to an overall efficiency near 6%. The onset potential observed to date for p-Si photocathodes is less than half of the value required for overall water splitting (1.23 V). This low onset potential limits the performance of tandem or “Z-scheme” approaches, which would function without external bias, as it limits the potential overlap required for spontaneous water splitting. An ideal photocathode for use in a solar-driven hydrogen production system without bias should have both a high current density and a favorable open-circuit potential versus the reversible H/H2 redox couple. Herein, we employ nanotextured p-InP photocathodes in conjunction with a TiO2 passivation layer and a Ru cocatalyst to increase both Jsc and Eos values under H2 evolution conditions. InP has a number of attractive attributes as a photocathode: 1) Its band gap of 1.3 eV is well-matched to the solar spectrum; InP-based solar cells have achieved AM1.5 G efficiencies of up to 22%. 2) The conduction band edge of InP is slightly above the water reduction potential, thus electron transfer is favorable in this system. 3) The surface-recombination velocity of untreated InP is low (ca. 10 cms 1 for n-type and 10 cms 1 for p-type), which is particularly important for nonplanar devices with high surface areas, such as those explored in this study. For these reasons, InP has been studied previously as a photocathode for both water splitting and CO2 reduction. [18–20] Specifically, Heller and Vadimsky reported attractive PEC performances with current densities up to 28 mAcm 2 and conversion efficiencies of approximately 12% in InP photocathodes. Motivated by these results, we use InP as a model material system to elucidate the role of surface nanotexturing on the PEC device performance. We find that nanotextured InP photocathodes exhibit drastically enhanced performances compared to our planar cells that were processed using identical conditions. We examine the various effects of nanotexturing [*] M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, J. Nah, J. W. Ager, Prof. A. Javey Material Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720 (USA) E-mail: [email protected] [email protected] M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, J. Nah, Prof. A. Javey Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720 (USA) M. H. Lee, T. S. Matthews, J. W. Ager, Prof. A. Javey Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)


Journal of Applied Physics | 2005

Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2

Gong-Ru Lin; Chun-Jung Lin; Chi-Kuan Lin; Li-Jen Chou; Yu-Lun Chueh

The mechanisms for silicon (Si) defect and nanocrystal related white and near-infrared electroluminescences (ELs) of Si-rich SiO2 films synthesized by Si-ion implantation and plasma-enhanced chemical-vapor deposition (PECVD) are investigated. The strong photoluminescence (PL) of Si-ion-implanted SiO2 (SiO2:Si+) at 415–455 nm contributed by weak-oxygen bond and neutral oxygen vacancy defects is observed after 1100 °C annealing for 180 min. The white-light EL of a reverse-biased SiO2:Si+ metal-oxide-semiconductor (MOS) diode with a turn-on voltage of 3.3 V originates from the minority-carrier tunneling and recombination in the defect states of SiO2:Si+, which exhibits maximum EL power of 120 nW at bias of 15 V with a power–current slope of 2.2μW∕A. The precipitation of nanocrystallite silicon (nc-Si) in SiO2:Si+ is less pronounced due to relatively small excess Si density. In contrast, the 4-nm nc-Si contributed to PL and EL at about 760 nm is precipitated in the PECVD-grown Si-rich SiOx film after annealin...


ACS Nano | 2013

13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell via Interface Engineering

Peichen Yu; Chia-Ying Tsai; Jan-Kai Chang; Chih-Chung Lai; Po-Han Chen; Yi-Chun Lai; Pei-Ting Tsai; Ming-Chin Li; Huai-Te Pan; Yang-Yue Huang; Chih-I Wu; Yu-Lun Chueh; Shih-Wei Chen; Chen-Hsun Du; Sheng-Fu Horng; Hsin-Fei Meng

Interface carrier recombination currently hinders the performance of hybrid organic-silicon heterojunction solar cells for high-efficiency low-cost photovoltaics. Here, we introduce an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer into hybrid heterojunction solar cells based on silicon nanowires (SiNWs) and conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS). The highest power conversion efficiency reaches a record 13.01%, which is largely ascribed to the modified organic surface morphology and suppressed saturation current that boost the open-circuit voltage and fill factor. We show that the insertion of TAPC increases the minority carrier lifetime because of an energy offset at the heterojunction interface. Furthermore, X-ray photoemission spectroscopy reveals that TAPC can effectively block the strong oxidation reaction occurring between PEDOT:PSS and silicon, which improves the device characteristics and assurances for reliability. These learnings point toward future directions for versatile interface engineering techniques for the attainment of highly efficient hybrid photovoltaics.

Collaboration


Dive into the Yu-Lun Chueh's collaboration.

Top Co-Authors

Avatar

Li-Jen Chou

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ze Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Ali Javey

University of California

View shared research outputs
Top Co-Authors

Avatar

Henry Medina

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chia-Wei Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Hao-Chung Kuo

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Yi-Chung Wang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ting Yen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Zhiming Wang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jr-Hau He

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge