Yu-Pei Yuan
Wuhan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Pei Yuan.
EBioMedicine | 2017
Zhen-Guo Ma; Yu-Pei Yuan; Xin Zhang; Si-Chi Xu; Sha-Sha Wang; Qizhu Tang
Mitogen-activated protein kinases (MAPKs) and AMPactivated protein kinase α (AMPKα) play critical roles in the process of cardiac hypertrophy. Previous studies have demonstrated that piperine activates AMPKα and reduces the phosphorylation of extracellular signal-regulated kinase (ERK). However, the effect of piperine on cardiac hypertrophy remains completely unknown. Here, we show that piperine-treated mice had similar hypertrophic responses as mice treated with vehicle but exhibited significantly attenuated cardiac fibrosis after pressure overload or isoprenaline (ISO) injection. Piperine inhibited the transformation of cardiac fibroblasts to myofibroblasts induced by transforming growth factor-β (TGF-β) or angiotensin II (Ang II) in vitro. This anti-fibrotic effect was independent of the AMPKα and MAPK pathway. Piperine blocked activation of protein kinase B (AKT) and, downstream, glycogen synthase kinase 3β (GSK3β). The overexpression of constitutively active AKT or the knockdown of GSK3β completely abolished the piperine-mediated protection of cardiac fibroblasts. The cardioprotective effects of piperine were blocked in mice with constitutively active AKT. Pretreatment with GW9662, a specific inhibitor of peroxisome proliferator activated receptor-γ (PPAR-γ), reversed the effect elicited by piperine in vitro. In conclusion, piperine attenuated cardiac fibrosis via the activation of PPAR-γ and the resultant inhibition of AKT/GSK3β.
Journal of Molecular and Cellular Cardiology | 2018
Yu-Pei Yuan; Zhen-Guo Ma; Xin Zhang; Si-Chi Xu; Xiao-Feng Zeng; Zheng Yang; Wei Deng; Qi-Zhu Tang
BACKGROUND Inflammation and myocytes apoptosis play critical roles in the development of doxorubicin (DOX)-induced cardiotoxicity. Our previous study found that C1q/tumour necrosis factor-related protein-3 (CTRP3) could inhibit cardiac inflammation and apoptosis of myocytes but its role in DOX-induced heart injury remains largely unknown. Our study aimed to investigate whether CTRP3 protected against DOX-induced heart injury and the underlying mechanism. METHODS We overexpressed CTRP3 in the hearts using an adeno-associated virus system. The mice were subjected to a single intraperitoneal injection of DOX (15mg/kg) to induce short-term model for cardiomyopathy. The morphological examination and biochemical analysis were used to evaluate the effects of CTRP3. H9C2 cells were used to verify the protective role of CTRP3 in vitro. RESULTS Myocardial CTRP3 protein levels were reduced in DOX-treated mice. Cardiac specific-overexpression of CTRP3 preserved heart dysfunction, and attenuated cardiac inflammation and cell loss induced by DOX in vivo and in vitro. CTRP3 could activate silent information regulator 1 (Sirt1) in vivo and in vitro. Moreover, specific inhibitor of Sirt1 and the silence of Sirt1 could abolish the protective effects of CTRP3 against DOX-induced inflammation and apoptosis. CONCLUSION CTRP3 protected against DOX-induced heart injury via activation of Sirt1. CTRP3 has therapeutic potential for the treatment of DOX cardiotoxicity.
Ppar Research | 2017
Si-Chi Xu; Zhen-Guo Ma; Wen-Ying Wei; Yu-Pei Yuan; Qi-Zhu Tang
Background. Peroxisome proliferator-activated receptor-α (PPAR-α) is closely associated with the development of cardiac hypertrophy. Previous studies have indicated that bezafibrate (BZA), a PPAR-α agonist, could attenuate insulin resistance and obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy. Methods. Mice were orally given BZA (100 mg/kg) for 7 weeks beginning 1 week after aortic banding (AB) surgery. Cardiac hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular cardiomyocytes (NRVMs) were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results. Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment also reduced the phosphorylation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinases (MAPKs). BZA suppressed phenylephrine- (PE-) induced hypertrophy of cardiomyocyte in vitro. The protective effects of BZA were abolished by the treatment of the PPAR-α antagonist in vitro. Conclusions. BZA could attenuate pressure overload-induced cardiac hypertrophy and fibrosis.
Clinical Science | 2018
Zhen-Guo Ma; Xin Zhang; Yu-Pei Yuan; Ya-Ge Jin; Ning Li; Chun-Yan Kong; Peng Song; Qizhu Tang
T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.
Cell Death and Disease | 2018
Xin Zhang; Zhen-Guo Ma; Yu-Pei Yuan; Si-Chi Xu; Wen-Ying Wei; Peng Song; Chun-Yan Kong; Wei Deng; Qizhu Tang
Agonists of peroxisome proliferator-activated receptor gamma (PPAR-γ) can activate 5′ AMP-activated protein kinase alpha (AMPKα) and exert cardioprotective effects. A previous study has demonstrated that rosmarinic acid (RA) can activate PPAR-γ, but its effect on cardiac remodeling remains largely unknown. Our study aimed to investigate the effect of RA on cardiac remodeling and to clarify the underlying mechanism. Mice were subjected to aortic banding to generate pressure overload induced cardiac remodeling and then were orally administered RA (100 mg/kg/day) for 7 weeks beginning 1 week after surgery. The morphological examination, echocardiography, and molecular markers were used to evaluate the effects of RA. To ascertain whether the beneficial effect of RA on cardiac fibrosis was mediated by AMPKα, AMPKα2 knockout mice were used. Neonatal rat cardiomyocytes and fibroblasts were separated and cultured to validate the protective effect of RA in vitro. RA-treated mice exhibited a similar hypertrophic response as mice without RA treatment, but had an attenuated fibrotic response and improved cardiac function after pressure overload. Activated AMPKα was essential for the anti-fibrotic effect of RA via inhibiting the phosphorylation and nuclear translocation of Smad3 in vivo and in vitro, and AMPKα deficiency abolished RA-mediated protective effects. Small interfering RNA against Ppar-γ (siPpar-γ) and GW9662, a specific antagonist of PPAR-γ, abolished RA-mediated AMPKα phosphorylation and alleviation of fibrotic response in vitro. RA attenuated cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling and PPAR-γ was required for the activation of AMPKα. RA might be a promising therapeutic agent against cardiac fibrosis.
Molecular and Cellular Endocrinology | 2018
Wen-Ying Wei; Zhen-Guo Ma; Ning Zhang; Si-Chi Xu; Yu-Pei Yuan; Xiao-Feng Zeng; Qi-Zhu Tang
C1q/tumor necrosis factor-related protein-3 (CTRP3) shows striking homologies of genomic structure to the adiponectin. In this study, we aimed to investigate the protective role of CTRP3 against sepsis-induced cardiomyopathy. Here, we overexpressed CTRP3 in myocardium by direct intramyocardial injection and constructed a model of lipopolysaccharide (LPS)-induced sepsis in mice. Our results demonstrated that cardiac-specific overexpression of CTRP3 remarkably attenuated myocardial dysfunction and increased the phosphorylation level of AMPKα during LPS-induced sepsis. The anti-inflammatory effects of CTRP3, as determined by decreased mRNA levels of TNF-α, IL-6 and a lower protein expression of phosphorylated NF-κB p65 and IκBα, was detected in mice following LPS treatment. Additionally, CTRP3 suppressed cardiac apoptosis induced by LPS in mice as indicated by terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining and western blot for Cleaved-caspase3, Bax and Bcl-2. In conclusion, CTRP3 could protect against sepsis-induced myocardial dysfunction in mice. The cardioprotective effects of CTRP3 might be mediated by activating AMPKα signaling pathway and blunting inflammatory response and apoptosis.
International Journal of Biological Sciences | 2018
Zhen-Guo Ma; Yu-Pei Yuan; Hai-Ming Wu; Xin Zhang; Qi-Zhu Tang
Cardiac fibrosis is defined as the imbalance of extracellular matrix (ECM) production and degradation, thus contributing to cardiac dysfunction in many cardiac pathophysiologic conditions. This review discusses specific markers and origin of cardiac fibroblasts (CFs), and the underlying mechanism involved in the development of cardiac fibrosis. Currently, there are no CFs-specific molecular markers. Most studies use co-labelling with panels of antibodies that can recognize CFs. Origin of fibroblasts is heterogeneous. After fibrotic stimuli, the levels of myocardial pro-fibrotic growth factors and cytokines are increased. These pro-fibrotic growth factors and cytokines bind to its receptors and then trigger the activation of signaling pathway and transcriptional factors via Smad-dependent or Smad independent-manners. These fibrosis-related transcriptional factors regulate gene expression that are involved in the fibrosis to amplify the fibrotic response. Understanding the mechanisms responsible for initiation, progression, and amplification of cardiac fibrosis are of great clinical significance to find drugs that can prevent the progression of cardiac fibrosis.
Cellular Physiology and Biochemistry | 2018
Wen-Ying Wei; Ning Zhang; Ling-Li Li; Zhen-Guo Ma; Man Xu; Yu-Pei Yuan; Wei Deng; Qizhu Tang
Background/Aims: Cardiac fibrosis, characterized by an unbalanced production and degradation of extracellular matrix components, is a common pathophysiology of multiple cardiovascular diseases. Recent studies suggested that endothelial to mesenchymal transition (EndMT) could be a source of activated fibroblasts and contribute to cardiac fibrosis. Here, the role of pioglitazone (PIO) in cardiac fibrosis and EndMT was elaborated. Methods: Male C57BL/6 mice were subjected to aortic banding (AB), which was used to construct a model of pressure overload-induced cardiac hypertrophy. PIO and GW9662 was given for 4 weeks to detect the effects of PIO on EndMT. Results: Our results showed PIO treatment attenuated cardiac hypertrophy, dysfunction and fibrosis response to pressure overload. Mechanistically, PIO suppressed the TGF-β/Smad signaling pathway activated by 4-week AB surgery. Moreover, PIO dramatically inhibited EndMT in vivo and in vitro stimulated by pressure overload or TGF-β. A selective antagonist of PPAR-γ, GW9662, neutralized the anti-fibrotic effect and abolished the inhibitory effect of EndMT during the treatment of PIO. Conclusion: Our data implied that PIO exerts an alleviative effect on cardiac fibrosis via inhibition of the TGF-β/Smad signaling pathway and EndMT by activating PPAR-γ.
Basic Research in Cardiology | 2018
Zhen-Guo Ma; Jia Dai; Yu-Pei Yuan; Zhou-Yan Bian; Si-Chi Xu; Ya-Ge Jin; Xin Zhang; Qizhu Tang
Previous studies have suggested the involvement of CD4 + T lymphocytes in cardiac remodelling. T-bet can direct Th1 lineage commitment. This study aimed to investigate the functional significance of T-bet in cardiac remodelling induced by pressure overload using T-bet global knockout rats. Increased T-bet levels were observed in rodent and human hypertrophied hearts. T-bet deficiency resulted in a less severe hypertrophic phenotype in rats. CD4 + T-lymphocyte reconstitution in T-bet−/− rats resulted in aggravated cardiac remodelling. T-cell homing molecule expression and cytokine secretion were altered in T-bet-deficient rat hearts. Administration of exogenous interferon-γ (IFN-γ) offset T-bet deficiency-mediated cardioprotection. Cardiomyocytes cultured in T-bet−/− CD4 + T-cell-conditioned media showed a reduced hypertrophic response after hypertrophic stimuli, which was abolished by an IFN-γ-neutralizing antibody. Taken together, our findings show that T-bet deficiency attenuates pressure overload-induced cardiac remodelling in rats. Specifically, targeting T-bet in T cells may be of great importance for the treatment of pathological cardiac remodelling and heart failure.
Diabetologia | 2017
Zhen-Guo Ma; Yu-Pei Yuan; Si-Chi Xu; Wen-Ying Wei; Chun-Ru Xu; Xin Zhang; Qing-Qing Wu; Hai-Han Liao; Jian Ni; Qizhu Tang