Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Yan Jia is active.

Publication


Featured researches published by Yu-Yan Jia.


Journal of Biological Chemistry | 2010

SIRT1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages

Ran Zhang; Hou-Zao Chen; Jin-Jing Liu; Yu-Yan Jia; Zhu-Qin Zhang; Ruifeng Yang; Yuan Zhang; Jing Xu; Yu-Sheng Wei; De-Pei Liu; Chih-Chuan Liang

SIRT1 (Sirtuin type 1), a mammalian orthologue of yeast SIR2 (silent information regulator 2), has been shown to mediate a variety of calorie restriction (CR)-induced physiological events, such as cell fate regulation via deacetylation of the substrate proteins. However, whether SIRT1 deacetylates activator protein-1 (AP-1) to influence its transcriptional activity and target gene expression is still unknown. Here we demonstrate that SIRT1 directly interacts with the basic leucine zipper domains of c-Fos and c-Jun, the major components of AP-1, by which SIRT1 suppressed the transcriptional activity of AP-1. This process requires the deacetylase activity of SIRT1. Notably, SIRT1 reduced the expression of COX-2, a typical AP-1 target gene, and decreased prostaglandin E2 (PGE2) production of peritoneal macrophages (pMΦs). pMΦs with SIRT1 overexpression displayed improved phagocytosis and tumoricidal functions, which are associated with depressed PGE2. Furthermore, SIRT1 protein level was up-regulated in CR mouse pMΦs, whereas elevated SIRT1 decreased COX-2 expression and improved PGE2-related macrophage functions that were reversed following inhibition of SIRT1 deacetylase activity. Thus, our results indicate that SIRT1 may be a mediator of CR-induced macrophage regulation, and its deacetylase activity contributes to the inhibition of AP-1 transcriptional activity and COX-2 expression leading to amelioration of macrophage function.


PLOS ONE | 2014

The Involvement of NFAT Transcriptional Activity Suppression in SIRT1-Mediated Inhibition of COX-2 Expression Induced by PMA/Ionomycin

Yu-Yan Jia; Jie Lu; Yue Huang; Guang Liu; Peng Gao; Yan-Zhen Wan; Ran Zhang; Zhu-Qin Zhang; Ruifeng Yang; Xiaoqiang Tang; Jing Xu; Xu Wang; Hou-Zao Chen; De-Pei Liu

SIRT1, a class III histone deacetylase, acts as a negative regulator for many transcription factors, and plays protective roles in inflammation and atherosclerosis. Transcription factor nuclear factor of activated T cells (NFAT) has been previously shown to play pro-inflammatory roles in endothelial cells. Inhibition of NFAT signaling may be an attractive target to regulate inflammation in atherosclerosis. However, whether NFAT transcriptional activity is suppressed by SIRT1 remains unknown. In this study, we found that SIRT1 suppressed NFAT-mediated transcriptional activity. SIRT1 interacted with NFAT, and the NHR and RHR domains of NFAT mediated the interaction with SIRT1. Moreover, we found that SIRT1 primarily deacetylated NFATc3. Adenoviral over-expression of SIRT1 suppressed PMA and calcium ionophore Ionomycin (PMA/Io)-induced COX-2 expression in human umbilical vein endothelial cells (HUVECs), while SIRT1 RNAi reversed the effects in HUVECs. Moreover, inhibition of COX-2 expression by SIRT1 in PMA/Io-treated HUVECs was largely abrogated by inhibiting NFAT activation. Furthermore, SIRT1 inhibited NFAT-induced COX-2 promoter activity, and reduced NFAT binding to the COX-2 promoter in PMA/Io-treated HUVECs. These results suggest that suppression of NFAT transcriptional activity is involved in SIRT1-mediated inhibition of COX-2 expression induced by PMA/Io, and that the negative regulatory mechanisms of NFAT by SIRT1 may contribute to its anti-inflammatory effects in atherosclerosis.


Science China-life Sciences | 2013

SIRT1 suppresses PMA and ionomycin-induced ICAM-1 expression in endothelial cells

Yu-Yan Jia; Peng Gao; Hou-Zao Chen; Yan-Zhen Wan; Ran Zhang; Zhu-Qin Zhang; Ruifeng Yang; Xu Wang; Jing Xu; De-Pei Liu

Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the recruitment of leukocytes to the endothelium, which causes inflammation and initiation of atherosclerosis. We have previously shown that endothelium-specific over-expression of class III deacetylase SIRT1 decreases atherosclerosis. We therefore addressed the hypothesis that SIRT1 suppresses ICAM-1 expression in the endothelial cells. Here, we found that expression of SIRT1 and ICAM-1 was significantly induced by PMA and ionomycin (PMA/Io) in human umbilical vein endothelial cells (HUVECs). Adenovirus-mediated over-expression of SIRT1 significantly inhibited PMA/Io-induced ICAM-1 expression in HUVECs. Knockdown of SIRT1 by RNA interference (RNAi) resulted in increased expression of ICAM-1 in HUVECs. Luciferase report assay showed that over-expression of SIRT1 suppressed ICAM-1 promoter activity both in basic and in PMA/Io-induced conditions. We further found that SIRT1 was involved in transcription complex binding on the ICAM-1 promoter by chromatin immunoprecipitation (ChIP) assays. Furthermore, SIRT1 RNAi increased NF-κB p65 binding ability to the ICAM-1 promoter by ChIP assays. Overall, these data suggests that SIRT1 inhibits ICAM-1 expression in endothelial cells, which may contribute to its anti-atherosclerosis effect.


The EMBO Journal | 2016

Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential

Meili Zhang; Li Cheng; Yu-Yan Jia; Guang Liu; Cuiping Li; Shuhui Song; Allan Bradley; Yue Huang

Aneuploidy leads to severe developmental defects in mammals and is also a hallmark of cancer. However, whether aneuploidy is a driving cause or a consequence of tumor formation remains controversial. Paradoxically, existing studies based on aneuploid yeast and mouse fibroblasts have shown that aneuploidy is usually detrimental to cellular fitness. Here, we examined the effects of aneuploidy on mouse embryonic stem (ES) cells by generating a series of cell lines that each carries an extra copy of single chromosomes, including trisomy 6, 8, 11, 12, or 15. Most of these aneuploid cell lines had rapid proliferation rates and enhanced colony formation efficiencies. They were less dependent on growth factors for self‐renewal and showed a reduced capacity to differentiate in vitro. Moreover, trisomic stem cells formed teratomas more efficiently, from which undifferentiated cells can be recovered. Further investigations demonstrated that co‐culture of wild‐type and aneuploid ES cells or supplementation with extracellular BMP4 rescues the differentiation defects of aneuploid ES cells.


Cell discovery | 2015

Rapidly generating knockout mice from H19-Igf2 engineered androgenetic haploid embryonic stem cells

Meili Zhang; Yufang Liu; Guang Liu; Xin Li; Yu-Yan Jia; Li-Hong Sun; Liu Wang; Qi Zhou; Yue Huang

Haploid mammalian embryonic stem cells (ESCs) hold great promise for functional genetic studies and assisted reproduction. Recently, rodent androgenetic haploid ESCs (AG-haESCs) were generated from androgenetic blastocysts and functioned like sperm to produce viable offspring via the intracytoplasmic AG-haESCs injection into oocytes. However, the efficiency of this reproduction was very low. Most pups were growth-retarded and died shortly after birth, which is not practical for producing knockout animals. Further investigation suggested a possible link between the low birthrate and aberrant expression of imprinted genes. Here, we report the high-frequency generation of healthy, fertile mice from H19-Igf2 imprinting-locus modified AG-haESCs, which maintained normal paternal imprinting and pluripotency. Moreover, it is feasible to perform further genetic manipulations in these AG-haESCs. Our study provides a reliable and efficient tool to rapidly produce gene-modified mouse models and will benefit reproductive medicine in the future.


BioMed Research International | 2015

Regulation of Cell Cycle Regulators by SIRT1 Contributes to Resveratrol-Mediated Prevention of Pulmonary Arterial Hypertension

Shuang Zhou; Mengtao Li; Yu-Yan Jia; Jin-Jing Liu; Qian Wang; Zhuang Tian; Yong-Tai Liu; Hou-Zao Chen; De-Pei Liu; Xiaofeng Zeng

Pulmonary arterial hypertension (PAH) is a major cause of morbidity and mortality in rheumatic diseases. Vascular remodeling due to the proliferation of pulmonary arterial smooth muscle cells (PASMCs) is central to the development of PAH. To date, it is still unclear if Silence Information Regulator 1 (SIRT1) regulates cell cycle regulators in the proliferation of PASMCs and contributes to prevention of PAH by resveratrol. In this study, we found that a significant decrease of SIRT1 expression levels in platelet-derived growth factor BB (PDGF-BB) treated human PASMCs (HPASMCs) and in monocrotaline (MCT) induced PAH rat. Overexpression of SIRT1 induced G1 phase arrest and increased p21 expression but decreased cyclin D1 expression in PDGF-BB treated HPASMCs. Moreover, resveratrol attenuated pulmonary arterial remodeling, decreased pulmonary arterial pressure, and upregulated SIRT1 and p21 expression but downregulated cyclin D1 expression in MCT induced PAH rat. Notably, knockdown of SIRT1 eliminated the regulation of resveratrol on p21 and cyclin D1 expression in PDGF-BB treated HPASMCs. These results demonstrated that SIRT1 mediated the regulation of resveratrol on the expression of cell cycle regulatory molecules. It suggests that SIRT1 exerts a protective role in PAH associated with rheumatic diseases and can be a potential treatment target.


Chinese Medical Sciences Journal | 2013

Up-regulation of Fas Ligand Expression by Sirtuin 1 in both Flow-restricted Vessels and Serum-stimulated Vascular Smooth Muscle Cells

Li Li; Peng Gao; Hou-Zao Chen; Zhu-Qin Zhang; Ting-Ting Xu; Yu-Yan Jia; Huina Zhang; Guanhua Du; De-Pei Liu

OBJECTIVEnTo study the role of sirtuin 1 (SIRT1) in Fas ligand (FasL) expression regulation during vascular lesion formation and to elucidate the potential mechanisms.nnnMETHODSnSIRT1 and FasL protein levels were detected by Western blotting in either mouse arteries extract or the whole rat aortic vascular smooth muscle cell (VSMC) lysate. Smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) C57BL/6 mice and their littermate wild-type (WT) controls underwent complete carotid artery ligation (ligation groups) or the ligation-excluded operation (sham groups). The carotid arteries were collected 1 day after operation. Reverse transcription-polymerase chain reaction was performed to detect the mRNA levels of SIRT1 and FasL. Luciferase reporter assays were performed to detect the effect of WT-SIRT1, a dominant-negative form of SIRT1 (SIRT1H363Y), and GATA-6 on the promoter activity of FasL. Flow cytometry assay was applied to measure the hypodiploid DNA content of VSMC so as to monitor cellular apoptosis.nnnRESULTSnSIRT1 was expressed in both rat aortic VSMCs and mouse arteries. Forced SIRT1 expression increased FasL expression both in injured mouse carotid arteries 1 day after ligation (P<0.001) and VSMCs treated with serum (P<0.05 at the transcriptional level, P<0.001 at the protein level). No notable apoptosis was observed. Furthermore, transcription factor GATA-6 increased the promoter activity of FasL (P<0.001). The induction of FasL promoter activity by GATA-6 was enhanced by WT-SIRT1 (P<0.001), while SIRT1H363Y significantly relieved the enhancing effect of WT-SIRT1 on GATA-6 (P<0.001).nnnCONCLUSIONSnOverexpression of SIRT1 up-regulates FasL expression in both flow-restricted mouse carotid arteries and serum-stimulated VSMCs. The transcription factor GATA-6 participates in the transcriptional regulation of FasL expression by SIRT1.


Chinese Medical Sciences Journal | 2010

Regulation of acyl-coenzyme A: cholesterol acyltransferase 2 expression by saturated fatty acids.

Zhu-Qin Zhang; Hou-Zao Chen; Ruifeng Yang; Ran Zhang; Yu-Yan Jia; Yang Xi; De-Pei Liu; Chih-Chuan Liang

OBJECTIVEnTo verify the regulation of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT 2), which is associated with cholesterol metabolism, by saturated fatty acids (SFAs).nnnMETHODSnPalmitic acid (PA), the most abundant saturated fatty acid in plasma, and oleic acid (OA), a widely distributed unsaturated fatty acid, were used to treat hepatic cells HepG2, HuH7, and mouse primary hepatocytes. In addition, PA at different concentrations and PA treatment at different durations were applied in HepG2 cells. In in vivo experiment, three-month male C57/BL6 mice were fed with control diet and SFA diet containing hydrogenated coconut oil rich of SFAs. The mRNA level of ACAT2 in those hepatic cells and the mouse livers was detected with real-time polymerase chain reaction (PCR).nnnRESULTSnIn the three types of hepatic cells treated with PA, that SFA induced significant increase of ACAT2 expression (Pü0.01), whereas treatment with OA showed no significant effect. That effect of PA was noticed gradually rising along with the increase of PA concentration and the extension of PA treatment duration (both Pü0.05). SFA diet feeding in mice resulted in a short-term and transient increase of ACAT2 expression in vivo, with a peak level appearing in the mice fed with SFA diet for two days (Pü0.05).nnnCONCLUSIONnSFA may regulate ACAT2 expression in human and mouse hepatic cells and in mouse livers.


Nucleic Acids Research | 2017

Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens

Guang Liu; Xue Wang; Yufang Liu; Meili Zhang; Tao Cai; Zhirong Shen; Yu-Yan Jia; Yue Huang

Abstract Forward genetic screens using mammalian embryonic stem (ES) cells have identified genes required for numerous cellular processes. However, loss-of-function screens are more difficult to conduct in diploid cells because, in most cases, both alleles of a gene must be mutated to exhibit a phenotype. Recently, mammalian haploid ES cell lines were successfully established and applied to several recessive genetic screens. However, all these screens were performed in mixed pools of mutant cells and were mainly based on positive selection. In general, negative screening is not easy to apply to these mixed pools, although quantitative deep sequencing of mutagen insertions can help to identify some ‘missing’ mutants. Moreover, the interplay between different mutant cells in the mixed pools would interfere with the readout of the screens. Here, we developed a method for rapidly generating arrayed haploid mutant libraries in which the proportion of homozygous mutant clones can reach 85%. After screening thousands of individual mutant clones, we identified a number of novel factors required for the onset of differentiation in ES cells. A negative screen was also conducted to discover mutations conferring cells with increased sensitivity to DNA double-strand breaks induced by the drug doxorubicin. Both of these screens illustrate the value of this system.


Cytometry Part A | 2016

Sorting of chromosomes on FACSAriaTM SORP for the preparation of painting probes

Yu-Yan Jia; Hou-Nan Wu; Liang Fang; Yun Liu; Li Cheng; Guang Liu; Meili Zhang; Yue Huang

High purity chromosome sorting can be performed on instruments such as MoFlo MLS and BD influx, which are stream‐in‐air sorters equipped with water‐cooled high power lasers. The FACSAria is a true fixed alignment, low laser powered instrument with a quartz flow cell gel‐coupled to the collection optics. However, whether high purity mouse and human chromosomes can be obtained by sorting on the BD FACSAriaTM Special Order Research Product (FACSAria SORP) remains to be determined. Here, we report that the high resolution flow karyotype of mouse lymphocytes and normal male human peripheral blood mononuclear cells (hPBMCs) can be obtained on the FACSAria SORP using laser power settings of 50 mW for 355 nm and 20 mW for 444 nm excitation. Furthermore, the use of Fluorescence in situ hybridization (FISH) confirmed that chromosome paints prepared from the sorted chromosomes demonstrated high purity and signal specificity. Notably, human chromosome 12 was separated from the chromosome 9–12 cluster in the flow karyotype, and its identity was confirmed using FISH in trisomy 12 human ES cell lines B2‐C7 and B2‐B8. In addition, multicolor FISH (mFISH) with human chromosome painting probes to 13,18, 21, and sex chromosomes X and Y showed high signal specificity in hPBMCs. Taken together, our findings demonstrated that high resolution flow karyotype can be obtained using FACSAria SORP. Moreover, a FISH analysis confirmed high purity of the sorted chromosomes. Additionally, in contrast to centromeric satellite probes, chromosome painting probes with high specificity are more suitable for detection of chromosome aberrations, such as deletions and translocations, in prenatal diagnosis.

Collaboration


Dive into the Yu-Yan Jia's collaboration.

Top Co-Authors

Avatar

De-Pei Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hou-Zao Chen

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Zhu-Qin Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Guang Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ran Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yue Huang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Ruifeng Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Meili Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Chih-Chuan Liang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jing Xu

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge