Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yujie Tang is active.

Publication


Featured researches published by Yujie Tang.


Cancer Cell | 2013

Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas

Sebastian Bender; Yujie Tang; Anders M. Lindroth; Volker Hovestadt; David T. W. Jones; Marcel Kool; Marc Zapatka; Paul A. Northcott; Dominik Sturm; Wei Wang; Bernhard Radlwimmer; Jonas W. Højfeldt; Nathalene Truffaux; David Castel; Simone Schubert; Marina Ryzhova; Huriye Şeker-Cin; Jan Gronych; Pascal-David Johann; Sebastian Stark; Jochen Meyer; Till Milde; Martin U. Schuhmann; Martin Ebinger; Camelia Maria Monoranu; Anitha Ponnuswami; Spenser Chen; Chris Jones; Olaf Witt; V. Peter Collins

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


Nature Medicine | 2015

Functionally defined therapeutic targets in diffuse intrinsic pontine glioma

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi–histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


Clinical Cancer Research | 2014

BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma

Pratiti Bandopadhayay; Guillaume Bergthold; Brian Nguyen; Simone Schubert; Sharareh Gholamin; Yujie Tang; Sara Bolin; Steven E. Schumacher; Rhamy Zeid; Sabran Masoud; Furong Yu; Nujsaubnusi Vue; William J. Gibson; Brenton R. Paolella; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Kun-Wei Liu; Robert J. Wechsler-Reya; William A. Weiss; Fredrik J. Swartling; Mark W. Kieran; James E. Bradner; Rameen Beroukhim; Yoon-Jae Cho

Purpose: MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma. Experimental Design: We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice. Results: Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index. Conclusion: JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma. Clin Cancer Res; 20(4); 912–25. ©2013 AACR.


Nature Medicine | 2014

Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

Yujie Tang; Sharareh Gholamin; Simone Schubert; Minde Willardson; Alex G. Lee; Pratiti Bandopadhayay; Guillame Bergthold; Sabran Masoud; Brian Nguyen; Nujsaubnusi Vue; Brianna Balansay; Furong Yu; Sekyung Oh; Pamelyn Woo; Spenser Chen; Anitha Ponnuswami; Michelle Monje; Scott X. Atwood; Ramon J. Whitson; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Rameen Beroukhim; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; Brian A. Link; James E. Bradner; Yoon-Jae Cho

Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged or a priori resistance to Smoothened antagonists.


Cell | 2015

Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion

Humsa Venkatesh; Tessa Johung; Viola Caretti; Alyssa Noll; Yujie Tang; Surya Nagaraja; Erin M. Gibson; Christopher Mount; Jai S. Polepalli; Siddhartha Mitra; Pamelyn Woo; Robert C. Malenka; Hannes Vogel; Markus Bredel; Parag Mallick; Michelle Monje

Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.


Neuro-oncology | 2016

Pediatric high-grade glioma: biologically and clinically in need of new thinking

Chris Jones; Matthias A. Karajannis; David T. W. Jones; Mark W. Kieran; Michelle Monje; Suzanne J. Baker; Oren J. Becher; Yoon-Jae Cho; Nalin Gupta; Cynthia Hawkins; Darren Hargrave; Daphne A. Haas-Kogan; Nada Jabado; Xiao-Nan Li; Sabine Mueller; Theo Nicolaides; Roger J. Packer; Anders Persson; Joanna J. Phillips; Erin F. Simonds; James M. Stafford; Yujie Tang; Stefan M. Pfister; William A. Weiss

Abstract High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analyses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, developmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative clinical management.


Nature Medicine | 2015

Erratum: Functionally defined therapeutic targets in diffuse intrinsic pontine glioma(Nature Medicine (2015) 21 (555-559) DOI: 10.1038/nm.3855)

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Catherine S Grasso, Yujie Tang, Nathalene Truffaux, Noah E Berlow, Lining Liu, Marie-Anne Debily, Michael J Quist, Lara E Davis, Elaine C Huang, Pamelyn J Woo, Anitha Ponnuswami, Spenser Chen, Tessa B Johung, Wenchao Sun, Mari Kogiso, Yuchen Du, Lin Qi, Yulun Huang, Marianne Hütt-Cabezas, Katherine E Warren, Ludivine Le Dret, Paul S Meltzer, Hua Mao, Martha Quezado, Dannis G van Vuurden, Jinu Abraham, Maryam Fouladi, Matthew N Svalina, Nicholas Wang, Cynthia Hawkins, Javad Nazarian, Marta M Alonso, Eric H Raabe, Esther Hulleman, Paul T Spellman, Xiao-Nan Li, Charles Keller, Ranadip Pal, Jacques Grill & Michelle Monje Nat. Med. 21, 555–559 (2015); doi:10.1038/nm.3855; published online 4 May 2015; corrected after print 15 June 2015


Cancer Cell | 2017

Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma.

Surya Nagaraja; Nicholas A. Vitanza; Pamelyn Woo; Kathryn R. Taylor; Fang Liu; Lei Zhang; Meng Li; Wei Meng; Anitha Ponnuswami; Wenchao Sun; Jie Ma; Esther Hulleman; Tomek Swigut; Joanna Wysocka; Yujie Tang; Michelle Monje

Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric cancer with limited therapeutic options. The majority of cases of DIPG exhibit a mutation in histone-3 (H3K27M) that results in oncogenic transcriptional aberrancies. We show here that DIPG is vulnerable to transcriptional disruption using bromodomain inhibition or CDK7 blockade. Targeting oncogenic transcription through either of these methods synergizes with HDAC inhibition, and DIPG cells resistant to HDAC inhibitor therapy retain sensitivity to CDK7 blockade. Identification of super-enhancers in DIPG provides insights toward the cell of origin, highlighting oligodendroglial lineage genes, and reveals unexpected mechanisms mediating tumor viability and invasion, including potassium channel function and EPH receptor signaling. The findings presented demonstrate transcriptional vulnerabilities and elucidate previously unknown mechanisms of DIPG pathobiology.


Acta Neuropathologica | 2014

α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

Soma Sengupta; Shyamal Dilhan Weeraratne; Hongyu Sun; Jillian Phallen; Sundari Rallapalli; Natalia Teider; Bela Kosaras; Vladimir Amani; Jessica Pierre-Francois; Yujie Tang; Brian Nguyen; Furong Yu; Simone Schubert; Brianna Balansay; Dimitris Mathios; Mirna Lechpammer; Tenley C. Archer; Phuoc T. Tran; Richard J. Reimer; James M. Cook; Michael Lim; Frances E. Jensen; Scott L. Pomeroy; Yoon-Jae Cho

Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.


Journal of Experimental & Clinical Cancer Research | 2018

Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma

Wei Meng; Baocheng Wang; Weiwei Mao; Jiajia Wang; Yang Zhao; Qifeng Li; Chenran Zhang; Yujie Tang; Jie Ma

BackgroundGlioblastoma (GBM) is the most common and most malignant primary brain cancer in adults. Despite multimodality treatment, the prognosis is still poor. Therefore, further work is urgently required to discover novel therapeutic strategies for GBM treatment.MethodsThe synergistic effects of cotreatment with the histone deacetylase (HDAC) inhibitor panobinostat and bromodomain inhibitor JQ1 or OTX015 were validated using cell viability assays in GBM cell lines. Furthermore, the inhibitory mechanisms were investigated via an EdU proliferation assay, an apoptosis assay, qPCR, Western blot and RNAseq analyses.ResultsWe found that the cotreatment with panobinostat and JQ1 or OTX015 synergistically inhibited cell viability in GBM cells. The cotreatment with panobinostat and JQ1 or OTX015 markedly inhibited cell proliferation and induced apoptosis in GBM cells. Compared with treatment with each drug alone, the cotreatment with panobinostat and JQ1 induced more profound caspase 3/7 activation and cytotoxicity. Mechanistic investigation showed that combination of panobinostat with JQ1 or OTX015 results in stronger repression of GBM-associated oncogenic genes or pathways as well as higher induction of GBM-associated tumor-suppressive genes.ConclusionOur study demonstrated that HDAC inhibitor and bromodomain inhibitor had synergistical efficacy against GBM cells. The cotreatment with HDAC inhibitor and bromodomain inhibitor warrants further attention in GBM therapy.

Collaboration


Dive into the Yujie Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Meng Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge