Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yujun Xie is active.

Publication


Featured researches published by Yujun Xie.


ACS Nano | 2016

One-Step Synthesis of MoS2/WS2 Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films

John M. Woods; Yeonwoong Jung; Yujun Xie; Wen Liu; Yanhui Liu; Hailiang Wang; Judy J. Cha

Transition metal dichalcogenides (TMDCs) are a promising class of two-dimensional (2D) materials for use in applications such as 2D electronics, optoelectronics, and catalysis. Due to the van der Waals (vdW) bonding between layers, vdW heterostructures can be constructed between two different species of TMDCs. Most studies employ exfoliation or co-vapor growth schemes, which are limited by the small size and uneven distribution of heterostructures on the growth substrate. In this work we demonstrate a one-step synthesis procedure for large-area vdW heterostructures between horizontal TMDCs MoS2 and WS2. The synthesis procedure is scalable and provides patterning ability, which is critical for electronic applications in integrated circuits. We demonstrate rectification characteristics of large-area MoS2/WS2 stacks. In addition, hydrogen evolution reaction performance was measured in these horizontal MoS2 and WS2 thin films, which indicate that, in addition to the catalytically active sulfur edge sites, defect sites may serve as catalyst sites.


Nature Communications | 2017

Efficient electrical control of thin-film black phosphorus bandgap

Bingchen Deng; Vy Tran; Yujun Xie; Hao Jiang; Cheng Li; Qiushi Guo; Xiaomu Wang; He Tian; Steven J. Koester; Han Wang; Judy J. Cha; Qiangfei Xia; Li Yang; Fengnian Xia

Recently rediscovered black phosphorus is a layered semiconductor with promising electronic and photonic properties. Dynamic control of its bandgap can allow for the exploration of new physical phenomena. However, theoretical investigations and photoemission spectroscopy experiments indicate that in its few-layer form, an exceedingly large electric field in the order of several volts per nanometre is required to effectively tune its bandgap, making the direct electrical control unfeasible. Here we reveal the unique thickness-dependent bandgap tuning properties in intrinsic black phosphorus, arising from the strong interlayer electronic-state coupling. Furthermore, leveraging a 10 nm-thick black phosphorus, we continuously tune its bandgap from ∼300 to below 50 meV, using a moderate displacement field up to 1.1 V nm−1. Such dynamic tuning of bandgap may not only extend the operational wavelength range of tunable black phosphorus photonic devices, but also pave the way for the investigation of electrically tunable topological insulators and semimetals.


Nano Letters | 2015

Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility

Jie Shen; Yujun Xie; Judy J. Cha

Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.


Nature Communications | 2015

Nanoscale size effects in crystallization of metallic glass nanorods

Sungwoo Sohn; Yeonwoong Jung; Yujun Xie; Chinedum O. Osuji; Jan Schroers; Judy J. Cha

Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.


Nano Letters | 2017

Effective Interlayer Engineering of Two-Dimensional VOPO4 Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage

Lele Peng; Yue Zhu; Xu Peng; Zhiwei Fang; Wangsheng Chu; Yu Wang; Yujun Xie; Yafei Li; Judy J. Cha; Guihua Yu

Two-dimensional (2D) energy materials have shown the promising electrochemical characteristics for lithium ion storage. However, the decreased active surfaces and the sluggish charge/mass transport for beyond-lithium ion storage that has potential for large-scale energy storage systems, such as sodium or potassium ion storage, caused by the irreversible restacking of 2D materials during electrode processing remain a major challenge. Here we develop a general interlayer engineering strategy to address the above-mentioned challenges by using 2D ultrathin vanadyl phosphate (VOPO4) nanosheets as a model material for challenging sodium ion storage. Via controlled intercalation of organic molecules, such as triethylene glycol and tetrahydrofuran, the sodium ion transport in VOPO4 nanosheets has been significantly improved. In addition to advanced characterization including X-ray diffraction, high-resolution transmission electron microscopy, and X-ray absorption fine structure to characterize the interlayer and the chemical bonding/configuration between the organic intercalants and the VOPO4 host layers, density functional theory calculations are also performed to understand the diffusion behavior of sodium ions in the pure and TEG intercalated VOPO4 nanosheets. Because of the expanded interlayer spacing in combination with the decreased energy barriers for sodium ion diffusion, intercalated VOPO4 nanosheets show much improved sodium ion transport kinetics and greatly enhanced rate capability and cycling stability for sodium ion storage. Our results afford deeper understanding of the interlayer-engineering strategy to improve the sodium ion storage performance of the VOPO4 nanosheets. Our results may also shed light on possible multivalent-ion based energy storage such as Mg2+ and Al3+.


Journal of the American Chemical Society | 2018

Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution

Zhiwei Fang; Lele Peng; Yumin Qian; Xiao Zhang; Yujun Xie; Judy J. Cha; Guihua Yu

Seeking earth-abundant electrocatalysts with high efficiency and durability has become the frontier of energy conversion research. Mixed-transition-metal (MTM)-based electrocatalysts, owing to the desirable electrical conductivity, synergistic effect of bimetal atoms, and structural stability, have recently emerged as new-generation hydrogen evolution reaction (HER) electrocatalysts. However, the correlation between anion species and their intrinsic electrocatalytic properties in MTM-based electrocatalysts is still not well understood. Here we present a novel approach to tuning the anion-dependent electrocatalytic characteristics in MTM-based catalyst for HER, using holey Ni/Co-based phosphides/selenides/oxides (Ni-Co-A, A = P, Se, O) as the model materials. The electrochemical results, combined with the electrical conductivity measurement and DFT calculation, reveal that P substitution could modulate the electron configuration, lower the hydrogen adsorption energy, and facilitate the desorption of hydrogen on the active sites in Ni-Co-A holey nanostructures, resulting in superior HER catalytic activity. Accordingly we fabricate the NCP holey nanosheet electrocatalyst for HER with an ultralow onset overpotential of nearly zero, an overpotential of 58 mV, and long-term durability, along with an applied potential of 1.56 V to boost overall water splitting at 10 mA cm-2, among the best electrocatalysts reported for non-noble-metal catalysts to date. This work not only presents a deeper understanding of the intrinsic HER electrocatalytic properties for MTM-based electrocatalyst with various anion species but also offers new insights to better design efficient and durable water-splitting electrocatalysts.


Advanced Materials | 2018

Self‐Healing of a Confined Phase Change Memory Device with a Metallic Surfactant Layer

Yujun Xie; W. Kim; Yerin Kim; SangBum Kim; Jemima Gonsalves; M. BrightSky; Chung H. Lam; Yu Zhu; Judy J. Cha

Understanding and possibly recovering from the failure mechanisms of phase change memories (PCMs) are critical to improving their cycle life. Extensive electrical testing and postfailure electron microscopy analysis have shown that stuck-set failure can be recovered. Here, self-healing of novel confined PCM devices is directly shown by controlling the electromigration of the phase change material at the nanoscale. In contrast to the current mushroom PCM, the confined PCM has a metallic surfactant layer, which enables effective Joule heating to control the phase change material even in the presence of a large void. In situ transmission electron microscope movies show that the voltage polarity controls the direction of electromigration of the phase change material, which can be used to fill nanoscale voids that form during programing. Surprisingly, a single voltage pulse can induce dramatic migration of antimony (Sb) due to high current density in the PCM device. Based on the finding, self-healing of a large void inside a confined PCM device with a metallic liner is demonstrated for the first time.


Advanced Materials | 2018

Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire

Cheng Li; Ye Wu; Bingchen Deng; Yujun Xie; Qiushi Guo; Shaofan Yuan; Xiaolong Chen; Maruf A. Bhuiyan; Zishan Wu; Kenji Watanabe; Takashi Taniguchi; Hailiang Wang; Judy J. Cha; Michael Snure; Yingwei Fei; Fengnian Xia

Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high-quality few-layer and thin-film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin-film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field-effect mobility of the synthesized BP thin film is found to be around 160 cm2 V-1 s-1 along armchair direction and reaches up to about 200 cm2 V-1 s-1 at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high-quality BP devices and circuits.


ACS Nano | 2017

Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device

He Tian; Xi Cao; Yujun Xie; Xiaodong Yan; Andrew Kostelec; Don DiMarzio; Cheng Chang; Li-Dong Zhao; Wei Wu; Jesse Tice; Judy J. Cha; Jing Guo; Han Wang

Excitatory and inhibitory postsynaptic potentials are the two fundamental categories of synaptic responses underlying the diverse functionalities of the mammalian nervous system. Recent advances in neuroscience have revealed the co-release of both glutamate and GABA neurotransmitters from a single axon terminal in neurons at the ventral tegmental area that can result in the reconfiguration of the postsynaptic potentials between excitatory and inhibitory effects. The ability to mimic such features of the biological synapses in semiconductor devices, which is lacking in the conventional field effect transistor-type and memristor-type artificial synaptic devices, can enhance the functionalities and versatility of neuromorphic electronic systems in performing tasks such as image recognition, learning, and cognition. Here, we demonstrate an artificial synaptic device concept, an ambipolar junction synaptic devices, which utilizes the tunable electronic properties of the heterojunction between two layered semiconductor materials black phosphorus and tin selenide to mimic the different states of the synaptic connection and, hence, realize the dynamic reconfigurability between excitatory and inhibitory postsynaptic effects. The resulting device relies only on the electrical biases at either the presynaptic or the postsynaptic terminal to facilitate such dynamic reconfigurability. It is distinctively different from the conventional heterosynaptic device in terms of both its operational characteristics and biological equivalence. Key properties of the synapses such as potentiation and depression and spike-timing-dependent plasticity are mimicked in the device for both the excitatory and inhibitory response modes. The device offers reconfiguration properties with the potential to enable useful functionalities in hardware-based artificial neural network.


ACS Applied Materials & Interfaces | 2017

Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation

John M. Woods; Jie Shen; Piranavan Kumaravadivel; Yuan Pang; Yujun Xie; Grace A. Pan; Min Li; Eric I. Altman; Li Lu; Judy J. Cha

Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe2 exhibits large magnetoresistance due to electron-hole compensation; thus, Fermi level pinning in thin WTe2 flakes could break the electron-hole balance and suppress the large magnetoresistance. We show that WTe2 develops an ∼2 nm thick amorphous surface oxide, which shifts the Fermi level by ∼300 meV at the WTe2 surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe2, the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to ∼13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe2 flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.

Collaboration


Dive into the Yujun Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

He Tian

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge