Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukihiko Hirai is active.

Publication


Featured researches published by Yukihiko Hirai.


Journal of Virology | 2005

Hepatocyte Growth Factor Receptor Is a Coreceptor for Adeno-Associated Virus Type 2 Infection

Yuji Kashiwakura; Kenji Tamayose; Kazuhisa Iwabuchi; Yukihiko Hirai; Takashi Shimada; Kunio Matsumoto; Toshikazu Nakamura; Masami Watanabe; Kazuo Oshimi; Hiroyuki Daida

ABSTRACT After the first attachment of virus to the cell surface through a primary receptor, efficient entry of virus requires the presence of a coreceptor. For adeno-associated virus type 2 (AAV2) infection, heparan sulfate proteoglycan is supposed as the primary receptor, and αvβ5 integrin and FGFR1 are reported to act as coreceptors. In this study, we were able to demonstrate that hepatocyte growth factor receptor, c-Met, is also a coreceptor for AAV2 infection. AAV2-mediated transgene analyses revealed that c-Met expression significantly up-regulated transgene expression without increasing AAV2 cell binding. Moreover, a viral overlay assay elucidated the physical interaction between AAV2 and the β subunit of c-Met. These data suggest that c-Met plays the role of coreceptor for AAV2 infection by facilitating AAV2 internalization into the cytoplasm.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer

Hiroshi Takahashi; Yukihiko Hirai; Makoto Migita; Yoshihiko Seino; Yuh Fukuda; Hitoshi Sakuraba; Ryoichi Kase; Toshihide Kobayashi; Yasuhiro Hashimoto; Takashi Shimada

Fabry disease is a systemic disease caused by genetic deficiency of a lysosomal enzyme, α-galactosidase A (α-gal A), and is thought to be an important target for enzyme replacement therapy. We studied the feasibility of gene-mediated enzyme replacement for Fabry disease. The adeno-associated virus (AAV) vector containing the α-gal A gene was injected into the right quadriceps muscles of Fabry knockout mice. A time course study showed that α-gal A activity in plasma was increased to ≈25% of normal mice and that this elevated activity persisted for up to at least 30 weeks without development of anti-α-gal A antibodies. The α-gal A activity in various organs of treated Fabry mice remained 5–20% of those observed in normal mice. Accumulated globotriaosylceramide in these organs was completely cleared by 25 weeks after vector injection. Reduction of globotriaosylceramide levels was also confirmed by immunohistochemical and electronmicroscopic analyses. Echocardiographic examination of treated mice demonstrated structural improvement of cardiac hypertrophy 25 weeks after the treatment. AAV vector-mediated muscle-directed gene transfer provides an efficient and practical therapeutic approach for Fabry disease.


Neuroscience | 2007

Neuronal specificity of α-synuclein toxicity and effect of parkin co-expression in primates

Toru Yasuda; Sigehiro Miyachi; Ryo Kitagawa; K. Wada; Tomoko Nihira; Yong-Ri Ren; Yukihiko Hirai; N. Ageyama; K. Terao; Takashi Shimada; Masahiko Takada; Yoshikuni Mizuno; Hideki Mochizuki

Abstract Recombinant adeno-associated viral (rAAV) vector-mediated overexpression of α-synuclein (αSyn) protein has been shown to cause neurodegeneration of the nigrostriatal dopaminergic pathway in rodents and primates. Using serotype-2 rAAV vectors, we recently reported the protective effect of Parkin on αSyn-induced nigral dopaminergic neurodegeneration in a rat model. Here we investigated the neuronal specificity of αSyn toxicity and the effect of Parkin co-expression in a primate model. We used another serotype (type-1) of AAV vector that was confirmed to deliver genes of interest anterogradely and retrogradely to neurons in rats. The serotype-1 rAAV (rAAV1) carrying α Syn cDNA (rAAV1-αSyn), and a cocktail of rAAV1-αSyn and rAAV1 carrying parkin cDNA (rAAV1-parkin) were unilaterally injected into the striatum of macaque monkeys, resulting in protein expression in striatonigral GABAergic and nigrostriatal dopaminergic neurons. Injection of rAAV1-αSyn alone decreased tyrosine hydroxylase immunoreactivity in the striatum compared with the contralateral side injected with a cocktail of rAAV1-αSyn and rAAV1-parkin. Immunostaining of striatonigral GABAergic neurons was similar on both sides. Overexpression of Parkin in GABAergic neurons was associated with less accumulation of αSyn protein and/or phosphorylation at Ser129 residue. Our results suggest that the toxicity of accumulated αSyn is not induced in non-dopaminergic neurons and that the αSyn-ablating effect of Parkin is exerted in virtually all neurons in primates.


Brain | 2012

Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43

Azusa Uchida; Hiroki Sasaguri; Nobuyuki Kimura; Mio Tajiri; Takuya Ohkubo; Fumiko Ono; Fumika Sakaue; Kazuaki Kanai; Takashi Hirai; Tatsuhiko Sano; Kazumoto Shibuya; Masaki Kobayashi; Mariko Yamamoto; Shigefumi Yokota; Takayuki Kubodera; Masaki Tomori; Kyohei Sakaki; Mitsuhiro Enomoto; Yukihiko Hirai; Jiro Kumagai; Yasuhiro Yasutomi; Hideki Mochizuki; Satoshi Kuwabara; Toshiki Uchihara; Hidehiro Mizusawa; Takanori Yokota

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and phosphorylation of transactive response deoxyribonucleic acid-binding protein 43 occurred after degeneration had begun. In contrast, similarly prepared rat models expressed transactive response deoxyribonucleic acid-binding protein 43 only in the nucleus of motoneurons. There is thus a species difference in transactive response deoxyribonucleic acid-binding protein 43 pathology, and our monkey model recapitulates amyotrophic lateral sclerosis pathology to a greater extent than rodent models, providing a valuable tool for studying the pathogenesis of sporadic amyotrophic lateral sclerosis.


Brain Research | 2011

Global gene transfer into the CNS across the BBB after neonatal systemic delivery of single-stranded AAV vectors.

Noriko Miyake; Koichi Miyake; Motoko Yamamoto; Yukihiko Hirai; Takashi Shimada

Central nervous system (CNS) disorders are important targets for gene therapy; however, delivery of therapeutic proteins and/or genes to the brain remains a major challenge due to the difficulty of efficiently delivering viral vectors across the blood-brain barrier (BBB). In the present work, we tested the ability of several single-stranded adeno-associated viral (ssAAV) serotypes to deliver transgenes to the brain and spinal cord in neonatal mice. We injected ssAAV vectors encoding GFP (serotype-1, -8, -9 and -10: 1.5×10(11) vector genomes each) into the jugular vein of neonatal mice and assessed GFP expression immunohistochemically. Strong GFP signals were detected in both the brain and spinal cord after injection of any of these serotypes. ssAAV serotype-9 mediated gene transfer was the most efficient. GFP expression was detected throughout the brain, including the cortex, cerebellum, olfactory bulb and brainstem and was sustained for at least 18months. Immunohistochemical staining showed that the GFP signals were detected in GFAP positive astrocytes, NeuN positive neurons, and Calbindin positive purkinje cells. Our data suggest that systemic neonatal injection of ssAAV is an effective strategy for delivering transgenes to target neuronal systems that are not accessible to viral vectors in adult animals. These vectors should prove highly useful for efficient and long-term overexpression or downregulation of genes in CNS and spinal cord and could be a useful means of treating genetic neurological diseases.


Journal of Virology | 2000

Site-Specific Integration of an Adeno-Associated Virus Vector Plasmid Mediated by Regulated Expression of Rep Based on Cre-loxP Recombination

Wataru Satoh; Yukihiko Hirai; Kenji Tamayose; Takashi Shimada

ABSTRACT Recombinant adeno-associated virus (AAV) type 2 has attracted attention because it appears to have the potential to serve as a vector for human gene therapy. An interesting feature of wild-type AAV is its site-specific integration into AAVS1, a defined locus on chromosome 19. This reaction requires the presence of two viral elements: inverted terminal repeats and Rep78/68. Accordingly, current AAV vectors lacking the rep gene lack the capacity for site-specific integration. In this report, we describe the use of Cre-loxP recombination in a novel system for the regulated, transient expression of Rep78, which is potentially cytotoxic when synthesized constitutively. We constructed a plasmid in which the p5 promoter was situated downstream of the rep coding sequence; in this configuration, rep expression is silent. However, Cre circularizes the rep expression unit, directly joining the p5 promoter to the 5′ end of the rep78 coding sequence, resulting in expression of Rep78. Such structural and functional changes were confirmed by detailed molecular analysis. A key feature of this system is that Rep expression was terminated when the circular molecule was linearized and integrated into the chromosome. Using this regulated expression system, we attempted site-specific integration of AAV vector plasmids. A PCR-based assay and analysis of fluorescence in situ hybridization showed that the AAV vector sequence was integrated into chromosome 19. Sequence analysis also confirmed that transient expression of Rep78 was sufficient for site-specific integration at the AAVS1 locus, as is observed with integration of wild-type AAV.


Molecular Therapy | 2014

Intrathecal AAV Serotype 9-mediated Delivery of shRNA Against TRPV1 Attenuates Thermal Hyperalgesia in a Mouse Model of Peripheral Nerve Injury

Takashi Hirai; Mitsuhiro Enomoto; Hidetoshi Kaburagi; Shinichi Sotome; Kie Yoshida-Tanaka; Madoka Ukegawa; Hiroya Kuwahara; Mariko Yamamoto; Mio Tajiri; Haruka Miyata; Yukihiko Hirai; Makoto Tominaga; Kenichi Shinomiya; Hidehiro Mizusawa; Atsushi Okawa; Takanori Yokota

Gene therapy for neuropathic pain requires efficient gene delivery to both central and peripheral nervous systems. We previously showed that an adenoassociated virus serotype 9 (AAV9) vector expressing short-hairpin RNA (shRNA) could suppress target molecule expression in the dorsal root ganglia (DRG) and spinal cord upon intrathecal injection. To evaluate the therapeutic potential of this approach, we constructed an AAV9 vector encoding shRNA against vanilloid receptor 1 (TRPV1), which is an important target gene for acute pain, but its role in chronic neuropathic pain remains unclear. We intrathecally injected it into the subarachnoid space at the upper lumbar spine of mice 3 weeks after spared nerve injury (SNI). Delivered shTRPV1 effectively suppressed mRNA and protein expression of TRPV1 in the DRG and spinal cord, and it attenuated nerve injury-induced thermal allodynia 10-28 days after treatment. Our study provides important evidence for the contribution of TRPV1 to thermal hypersensitivity in neuropathic pain and thus establishes intrathecal AAV9-mediated gene delivery as an investigative and potentially therapeutic platform for the nervous system.


Journal of Human Genetics | 2006

Corrective effect on Fabry mice of yeast recombinant human α-galactosidase with N -linked sugar chains suitable for lysosomal delivery

Hitoshi Sakuraba; Yasunori Chiba; Masaharu Kotani; Ikuo Kawashima; Mai Ohsawa; Youichi Tajima; Yuki Takaoka; Yoshifumi Jigami; Hiroshi Takahashi; Yukihiko Hirai; Takashi Shimada; Yasuhiro Hashimoto; Kumiko Ishii; Toshihide Kobayashi; Kazuhiko Watabe; Tomoko Fukushige; Tamotsu Kanzaki

AbstractWe have previously reported the production of a recombinant α-galactosidase with engineered N-linked sugar chains facilitating uptake and transport to lysosomes in a Saccharomyces cerevisiae mutant. In this study, we improved the purification procedure, allowing us to obtain a large amount of highly purified enzyme protein with mannose-6-phosphate residues at the non-reducing ends of sugar chains. The products were incorporated into cultured fibroblasts derived from a patient with Fabry disease via mannose-6-phosphate receptors. The ceramide trihexoside (CTH) accumulated in lysosomes was cleaved dose-dependently, and the disappearance of deposited CTH was maintained for at least 7 days after administration. We next examined the effect of the recombinant α-galactosidase on Fabry mice. Repeated intravascular administration of the enzyme led to successful degradation of CTH accumulated in the liver, kidneys, heart, and spleen. However, cleavage of the accumulated CTH in the dorsal root ganglia was insufficient. As the culture of yeast cells is easy and economical, and does not require fetal calf serum, the recombinant α-galactosidase produced in yeast cells is highly promising as an enzyme source for enzyme replacement therapy in Fabry disease.


Human Gene Therapy | 2011

In Vivo Application of an RNAi Strategy for the Selective Suppression of a Mutant Allele

Takayuki Kubodera; Hiromi Yamada; Masayuki Anzai; Shinga Ohira; Shigefumi Yokota; Yukihiko Hirai; Hideki Mochizuki; Takashi Shimada; Tasuku Mitani; Hidehiro Mizusawa; Takanori Yokota

Gene therapy for dominantly inherited diseases with small interfering RNA (siRNA) requires mutant allele-specific suppression when genes in which mutation causes disease normally have an important role. We previously proposed a strategy for selective suppression of mutant alleles; both mutant and wild-type alleles are inhibited by most effective siRNA, and wild-type protein is restored using mRNA mutated to be resistant to the siRNA. Here, to prove the principle of this strategy in vivo, we applied it to our previously reported anti-copper/zinc superoxide dismutase (SOD1) short hairpin RNA (shRNA) transgenic (Tg) mice, in which the expression of the endogenous wild-type SOD1 gene was inhibited by more than 80%. These shRNA Tg mice showed hepatic lipid accumulation with mild liver dysfunction due to downregulation of endogenous wild-type SOD1. To rescue this side effect, we generated siRNA-resistant SOD1 Tg mice and crossed them with anti-SOD1 shRNA Tg mice, resulting in the disappearance of lipid accumulation in the liver. Furthermore, we also succeeded in mutant SOD1-specific gene suppression in the liver of SOD1(G93A) Tg mice, a model for amyotrophic lateral sclerosis, using intravenously administered viral vectors. Our method may prove useful for siRNA-based gene therapy for dominantly inherited diseases.


Molecular Genetics and Metabolism | 2009

Long-term inhibition of glycosphingolipid accumulation in Fabry model mice by a single systemic injection of AAV1 vector in the neonatal period

Koichi Ogawa; Yukihiko Hirai; Masamichi Ishizaki; Hiroshi Takahashi; Hideki Hanawa; Yoshitaka Fukunaga; Takashi Shimada

Fabry disease is caused by the deficiency of lysosomal alpha-galactosidase A (alpha-gal A) and usually develops clinical manifestations during childhood/adolescence. Adult Fabry model mice have been successfully treated by various viral vectors. Here, in order to examine the feasibility of preventive gene therapy, we compared AAV vector-mediated gene transfer into neonatal and adult model mice. AAV serotype 1 vector (AAV1) carrying human alpha-gal A cDNA driven by the CAG promoter was intravenously injected into adult (12 weeks old) and neonatal (2 days old) Fabry model mice, and were sacrificed for detailed examination 25 weeks after vector injection. AAV1 vector preferentially transduced the liver in male adult and sustained high concentration of alpha-gal A was detected in the liver, heart and plasma. In contrast, AAV1-mediated gene expression was suppressed in similarly treated female adult mice. When the vector was systemically injected into neonates, moderate increase in plasma alpha-gal A and cardiac-specific expression of alpha-gal A were observed independently of mouse sex. The high levels of alpha-gal A activity in the heart appear to be due to the strong activity of the CAG promoter in the heart. Globotriaosylceramide (Gb3) accumulation was efficiently inhibited in the liver and heart by a single injection into both adult and neonatal animals. The biodistribution of the AAV1 vector and levels of alpha-gal A expression are markedly different between adult and neonatal mice. Neonatal injection is effective to inhibit Gb3 accumulation and therefore, might help prevent failure of major organs during adulthood.

Collaboration


Dive into the Yukihiko Hirai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidehiro Mizusawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takanori Yokota

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge