Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yukiko Onishi is active.

Publication


Featured researches published by Yukiko Onishi.


Hypertension | 2002

Angiotensin II–Induced Insulin Resistance Is Associated With Enhanced Insulin Signaling

Takehide Ogihara; Tomoichiro Asano; Katsuyuki Ando; Yuko Chiba; Hideyuki Sakoda; Motonobu Anai; Nobuhiro Shojima; Hiraku Ono; Yukiko Onishi; Midori Fujishiro; Hideki Katagiri; Yasushi Fukushima; Masatoshi Kikuchi; Noriko Noguchi; Hiroyuki Aburatani; Issei Komuro; Toshiro Fujita

Abstract—Angiotensin II (AII) is involved in the pathogenesis of both hypertension and insulin resistance, though few studies have examined the relationship between the two. We therefore investigated the effects of chronic AII infusion on blood pressure and insulin sensitivity in rats fed a normal (0.3% NaCl) or high-salt (8% NaCl) diet. AII infusion for 12 days significantly elevated blood pressure and significant insulin resistance, assessed by a hyperinsulinemic-euglycemic clamp study and glucose uptake into isolated muscle and adipocytes. High-salt loading exacerbated the effects of AII infusion significantly. Despite the insulin resistance, insulin-induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrates, activation of phosphatidylinositol (PI) 3-kinase, and phosphorylation of Akt were all enhanced by AII infusion. Subsequently, to investigate whether oxidative stress induced by AII contributes to insulin resistance, the membrane-permeable superoxide dismutase mimetic, tempol, was administered to AII-infused rats. Chronic AII infusion induced an accumulated plasma cholesterylester hydroperoxide levels, indicating the increased oxidative stress, whereas the treatment with tempol normalized plasma cholesterylester hydroperoxide levels in AII-infused rats. In addition, the treatment with tempol normalized insulin resistance in AII-infused rats, shown as a decreased glucose infusion rate in the hyperinsulinemic euglycemic clamp study and a decreased insulin-induced glucose uptake into isolated skeletal muscle, as well as enhanced insulin-induced PI 3-kinase activation to those in the control rats. These results strongly suggest that AII-induced insulin resistance cannot be attributed to impairment of early insulin-signaling steps and that increased oxidative stress, possibly through impaired insulin signaling located downstream from PI 3-kinase activation, is involved in AII-induced insulin resistance.


Journal of Biological Chemistry | 1997

14-3-3 Protein Binds to Insulin Receptor Substrate-1, One of the Binding Sites of Which Is in the Phosphotyrosine Binding Domain

Takehide Ogihara; Toshiaki Isobe; Tohru Ichimura; Masato Taoka; Makoto Funaki; Hideyuki Sakoda; Yukiko Onishi; Kouichi Inukai; Motonobu Anai; Yasushi Fukushima; Masatoshi Kikuchi; Yoshio Yazaki; Yoshitomo Oka; Tomoichiro Asano

Insulin binding to its receptor induces the phosphorylation of cytosolic substrates, insulin receptor substrate (IRS)-1 and IRS-2, which associate with several Src homology-2 domain-containing proteins. To identify unique IRS-1-binding proteins, we screened a human heart cDNA library with32P-labeled recombinant IRS-1 and obtained two isoforms (ε and ζ) of the 14-3-3 protein family. 14-3-3 protein has been shown to associate with IRS-1 in L6 myotubes, HepG2 hepatoma cells, Chinese hamster ovary cells, and bovine brain tissue. IRS-2, a protein structurally similar to IRS-1, was also shown to form a complex with 14-3-3 protein using a baculovirus expression system. The amount of 14-3-3 protein associated with IRS-1 was not affected by insulin stimulation but was increased significantly by treatment with okadaic acid, a potent serine/threonine phosphatase inhibitor. Peptide inhibition experiments using phosphoserine-containing peptides of IRS-1 revealed that IRS-1 contains three putative binding sites for 14-3-3 protein (Ser-270, Ser-374, and Ser-641). Among these three, the motif around Ser-270 is located in the phosphotyrosine binding domain of IRS-1, which is responsible for the interaction with the insulin receptor. Indeed, a truncated mutant of IRS-1 consisting of only the phosphotyrosine binding domain retained the capacity to bind to 14-3-3 protein in vivo. Finally, the effect of 14-3-3 protein binding on the insulin-induced phosphorylation of IRS-1 was investigated. Phosphoamino acid analysis revealed that IRS-1 coimmunoprecipitated with anti-14-3-3 antibody to be weakly phosphorylated after insulin stimulation, on tyrosine as well as serine residues, compared with IRS-1 immunoprecipitated with anti-IRS-1 antibody. Thus, the association with 14-3-3 protein may play a role in the regulation of insulin sensitivity by interrupting the association between the insulin receptor and IRS-1.


Diabetes | 2003

Hepatic Akt Activation Induces Marked Hypoglycemia, Hepatomegaly, and Hypertriglyceridemia With Sterol Regulatory Element Binding Protein Involvement

Hiraku Ono; Hitoshi Shimano; Hideki Katagiri; Naoya Yahagi; Hideyuki Sakoda; Yukiko Onishi; Motonobu Anai; Takehide Ogihara; Midori Fujishiro; Amelia Y.I. Viana; Yasushi Fukushima; Miho Abe; Nobuhiro Shojima; Masatoshi Kikuchi; Nobuhiro Yamada; Yoshitomo Oka; Tomoichiro Asano

Akt is critical in insulin-induced metabolism of glucose and lipids. To investigate functions induced by hepatic Akt activation, a constitutively active Akt, NH(2)-terminally myristoylation signal-attached Akt (myr-Akt), was overexpressed in the liver by injecting its adenovirus into mice. Hepatic myr-Akt overexpression resulted in a markedly hypoglycemic, hypoinsulinemic, and hypertriglyceridemic phenotype with fatty liver and hepatomegaly. To elucidate the sterol regulatory element binding protein (SREBP)-1c contribution to these phenotypic features, myr-Akt adenovirus was injected into SREBP-1 knockout mice. myr-Akt overexpression induced hypoglycemia and hepatomegaly with triglyceride accumulation in SREBP-1 knockout mice to a degree similar to that in normal mice, whereas myr-Akt-induced hypertriglyceridemia in knockout mice was milder than that in normal mice. The myr-Akt-induced changes in glucokinase, phosphofructokinase, glucose-6-phosphatase, and PEPCK expressions were not affected by knocking out SREBP-1, whereas stearoyl-CoA desaturase 1 induction was completely inhibited in knockout mice. Constitutively active SREBP-1-overexpressing mice had fatty livers without hepatomegaly, hypoglycemia, or hypertriglyceridemia. Hepatic acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, and glucose-6-phosphate dehydrogenase expressions were significantly increased by overexpressing SREBP-1, whereas glucokinase, phospho-fructokinase, glucose-6-phosphatase, and PEPCK expressions were not or only slightly affected. Thus, SREBP-1 is not absolutely necessary for the hepatic Akt-mediated hypoglycemic effect. In contrast, myr-Akt-induced hypertriglyceridemia and hepatic triglyceride accumulation are mediated by both Akt-induced SREBP-1 expression and a mechanism involving fatty acid synthesis independent of SREBP-1.


Journal of Biological Chemistry | 2001

MKK6/3 and p38 MAPK Pathway Activation Is Not Necessary for Insulin-induced Glucose Uptake but Regulates Glucose Transporter Expression

Midori Fujishiro; Yukiko Gotoh; Hideki Katagiri; Hideyuki Sakoda; Takehide Ogihara; Motonobu Anai; Yukiko Onishi; Hiraku Ono; Makoto Funaki; Kouichi Inukai; Yasushi Fukushima; Masatoshi Kikuchi; Yoshitomo Oka; Tomoichiro Asano

p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor α, interleukin-1β, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor α and other factors.


Hypertension | 2002

High-Salt Diet Enhances Insulin Signaling and Induces Insulin Resistance in Dahl Salt-Sensitive Rats

Takehide Ogihara; Tomoichiro Asano; Katsuyuki Ando; Hideyuki Sakoda; Motonobu Anai; Nobuhiro Shojima; Hiraku Ono; Yukiko Onishi; Midori Fujishiro; Miho Abe; Yasushi Fukushima; Masatoshi Kikuchi; Toshiro Fujita

A high-salt diet, which is known to contribute to the pathogenesis of hypertension, is also reportedly associated with insulin resistance. We investigated the effects of a high-salt diet on insulin sensitivity and insulin signaling in salt-sensitive (Dahl-S) and salt resistant (Dahl-R) strains of the Dahl rat. Evaluation of hyperinsulinemic-euglycemic clamp studies and glucose uptake into the isolated soleus muscle revealed that salt loading (8% NaCl) for 4 weeks induced hypertension and significant insulin resistance in Dahl-S rats, whereas no significant effects were observed in Dahl-R rats. Despite the presence of insulin resistance, insulin-induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrates, activation of phosphatidylinositol 3-kinase, and phosphorylation of Akt were all enhanced in Dahl-S rats fed a high-salt diet. The mechanism underlying this form of insulin resistance thus differs from that previously associated with obesity and dexamethasone and is likely due to the impairment of one or more metabolic steps situated downstream of phosphatidylinositol 3-kinase and Akt activation. Interestingly, supplementation of potassium (8% KCl) ameliorated the changes in insulin sensitivity in Dahl-S rats fed a high-salt diet; this was associated with a slight but significant decrease in blood pressure. Evidence presented suggest that there is an interdependent relationship between insulin sensitivity and salt sensitivity of blood pressure in Dahl-S rats, and it is suggested that supplementing the diet with potassium may exert a protective effect against both hypertension and insulin resistance in salt-sensitive individuals.


Diabetes | 1999

Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats.

Motonobu Anai; Makoto Funaki; Takehide Ogihara; Akira Kanda; Yukiko Onishi; Hideyuki Sakoda; Kouichi Inukai; Masao Nawano; Yasushi Fukushima; Yoshio Yazaki; Masatoshi Kikuchi; Yoshitomo Oka; Tomoichiro Asano

Insulin receptor substrate (IRS)-1 and IRS-2, which mediate phosphatidylinositol (PI) 3-kinase activation, play essential roles in insulin-induced translocation of GLUT4 and in glycogen synthesis. In this study, we investigated the process of PI 3-kinase activation via binding with IRS-1 and -2 in liver, muscle, and fat of high-fat-fed rats, a model of insulin-resistant diabetes. In the liver of high-fat-fed rats, insulin increased the PI 3-kinase regulatory subunit p85alpha and the PI 3-kinase activities associated with IRS-1 3.6- and 2.4-fold, and with IRS-2, 4.7- and 3.0-fold, respectively, compared with those in control rats. The tyrosine phosphorylation levels of IRS-1 and IRS-2 were not significantly altered, however. In contrast with the liver, tyrosine phosphorylation levels and associated PI 3-kinase proteins and activities were decreased in the muscle and adipose tissue of high-fat-fed rats. Thus, high-fat feeding appears to cause insulin resistance in the liver by a mechanism different from the impaired PI 3-kinase activation observed in muscle and adipose tissue. Taking into consideration that hepatic PI 3-kinase activation is severely impaired in obese diabetic models such as Zucker fatty rats, it is possible that the mechanism by which a high-fat diet causes insulin resistance is quite different from that associated with obesity and overeating due to abnormality in the leptin system. This is the first report to show increased PI 3-kinase activation by insulin in an insulin-resistant diabetic animal model. These findings may be important for understanding the mechanism of insulin resistance in human NIDDM, since a high-fat diet is considered to be one of the major factors exacerbating insulin insensitivity in humans.


Biochemical and Biophysical Research Communications | 2003

Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation

Yukiko Onishi; Miho Honda; Takehide Ogihara; Hideyuki Sakoda; Motonobu Anai; Midori Fujishiro; Hiraku Ono; Nobuhiro Shojima; Yasushi Fukushima; Kouichi Inukai; Hideki Katagiri; Masatoshi Kikuchi; Yoshitomo Oka; Tomoichiro Asano

High ethanol intake is considered to impair insulin sensitivity. In the present study, we investigated the acute and chronic effects of ethanol intake on glucose metabolism and insulin signal transduction. Hyperinsulinemic-euglycemic clamp studies revealed 70% and 51% decreases in the glucose infusion rate, 52% and 31% decreases in the glucose utilization rate, and 6.6- and 8.0-fold increases in hepatic glucose in continuous- and acute-ethanol-loaded rats, respectively. Despite the presence of insulin resistance, alcohol-fed rats showed enhanced tyrosine phosphorylation of insulin receptors, IRS-1 and IRS-2, induced by insulin injection via the portal vein. PI 3-kinase activities associated with IRSs and phosphotyrosine also increased significantly as compared with those of controls. These data suggest ethanol intake to be a factor leading to insulin resistance, regardless of whether it is a single or continuous intake. In addition, the insulin signaling step impaired by ethanol feeding is likely to be downstream from PI 3-kinase.


Metabolism-clinical and Experimental | 1999

Imidapril, an angiotensin-converting enzyme inhibitor, improves insulin sensitivity by enhancing signal transduction via insulin receptor substrate proteins and improving vascular resistance in the Zucker fatty rat☆

Masao Nawano; Motonobu Anai; Makoto Funaki; Hiroyuki Kobayashi; Akira Kanda; Yasushi Fukushima; Kouichi Inukai; Takehide Ogihara; Hideyuki Sakoda; Yukiko Onishi; Masatoshi Kikuchi; Yoshio Yazaki; Yoshitomo Oka; Tomoichiro Asano

Angiotensin-converting enzyme (ACE) inhibitors are antihypertensive agents, that inhibit the conversion of angiotensin I to angiotensin II, resulting in smooth-muscle relaxation and a reduction of vascular resistance. Recently, it has been suggested that ACE inhibitors improve insulin resistance in diabetic patients. To investigate the effect of an ACE inhibitor on insulin sensitivity, insulin signaling, and circulation, imidapril was administered orally or intraduodenally to Zucker fatty rats. Oral administration of imidapril improved insulin sensitivity based on the results of an oral glucose tolerance test (OGTT) and a decrease in urinary glucose secretion. Phosphatidylinositol 3-kinase (PI 3-kinase) activity associated with hepatic insulin receptor substrate-1 (IRS-1) in the insulin-stimulated condition was significantly enhanced 110% without a significant alteration in tyrosine phosphorylation of IRS-1 in the imidapril-treated group. In muscle, IRS-1 tyrosine phosphorylation and PI 3-kinase activity associated with IRS-1 in the insulin-stimulated condition were enhanced 70% and 20%, respectively, in the imidapril-treated group. In contrast, an alteration of the IRS-2 pathway was observed only in liver; a significant insulin-induced increase in the IRS-2-associated PI 3-kinase over the basal level was observed in the imidapril-treated group but not in the control. In addition, treatment with imidapril was shown to significantly reduce blood pressure and increase blood flow in the liver and muscle. These results suggest that the ACE inhibitor imidapril may improve insulin sensitivity not only by acting directly on the insulin signaling pathway but also by increasing blood flow in tissues via normalization of vascular resistance, a major cause of hypertension.


Journal of Biological Chemistry | 1998

Different subcellular distribution and regulation of expression of insulin receptor substrate (IRS)-3 from those of IRS-1 and IRS-2.

Motonobu Anai; Hiraku Ono; Makoto Funaki; Yasushi Fukushima; Kouichi Inukai; Takehide Ogihara; Hideyuki Sakoda; Yukiko Onishi; Yoshio Yazaki; Masatoshi Kikuchi; Yoshitomo Oka; Tomoichiro Asano

Adipocytes contain three major substrate proteins of the insulin receptor, termed IRS-1, IRS-2, and IRS-3. We demonstrated that IRS-1 and IRS-2 are located mainly in the low density microsome (LDM) fraction and are tyrosine phosphorylated in response to insulin stimulation, leading to phosphatidylinositol (PI) 3-kinase activation. In contrast, IRS-3 is located mainly in the plasma membrane (PM) fraction and contributes to PI 3-kinase activation in the PM fraction. The different cellular localizations of IRS proteins may account for the mechanism of insulin resistance induced by a high fat diet, considering that PI 3-kinase activation in the LDM fraction is reportedly essential for the translocation of GLUT4 in adipocytes. High fat feeding in rats increased both protein and mRNA levels of IRS-3 but decreased those of IRS-1 and IRS-2 in epididymal adipocytes. As a result, selective impairment of insulin-induced PI 3-kinase activation was observed in the LDM fraction, whereas PI 3-kinase activation was conserved in the PM fraction. This is the first report showing that different IRS proteins function in different subcellular compartments, which may contribute to determining the insulin sensitivity in adipocytes.


Journal of Diabetes Investigation | 2013

Insulin degludec compared with insulin glargine in insulin‐naïve patients with type 2 diabetes: A 26‐week, randomized, controlled, Pan‐Asian, treat‐to‐target trial

Yukiko Onishi; Yasuhiko Iwamoto; Soon Jib Yoo; Per Clauson; Søren Can Tamer; Sungwoo Park

Insulin degludec (IDeg) is an ultra‐long‐acting basal insulin with a consistent action profile of >42 h. This trial compared the efficacy and safety of IDeg with insulin glargine (IGlar) in insulin‐naïve Asian patients with type 2 diabetes.

Collaboration


Dive into the Yukiko Onishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyuki Sakoda

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoichiro Asano

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kouichi Inukai

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshitomo Oka

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge