Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuko Nitahara-Kasahara is active.

Publication


Featured researches published by Yuko Nitahara-Kasahara.


Human Gene Therapy | 2009

Scalable Purification of Adeno-associated Virus Serotype 1 (AAV1) and AAV8 Vectors, Using Dual Ion-Exchange Adsorptive Membranes

Takashi Okada; Mutsuko Nonaka-Sarukawa; Ryosuke Uchibori; Kazue Kinoshita; Hiromi Hayashita-Kinoh; Yuko Nitahara-Kasahara; Shin'ichi Takeda; Keiya Ozawa

In vivo gene transduction with adeno-associated virus (AAV)-based vectors depends on laborious procedures for the production of high-titer vector stocks. Purification steps for efficient clearance of impurities such as host cell proteins and empty vector particles are required to meet end-product specifications. Therefore, the development of alternative, realistic methods to facilitate a scalable virus recovery procedure is critical to promote in vivo investigations. However, the conventional purification procedure with resin-based packed-bed chromatography suffers from a number of limitations, including variations in pressure, slow pore diffusion, and large bed volumes. Here we have employed disposable high-performance anion- and cation-exchange membrane adsorbers to effectively purify recombinant viruses. As a result of isoelectric focusing analysis, the isoelectric point of empty particles was found to be significantly higher than that of packaged virions. Therefore, AAV vector purification with the membrane adsorbers was successful and allowed higher levels of gene transfer in vivo without remarkable signs of toxicity or inflammation. Electron microscopy of the AAV vector stocks obtained revealed highly purified virions with as few as 0.8% empty particles. Furthermore, the membrane adsorbers enabled recovery of AAV vectors in the transduced culture supernatant. Also, the ion-exchange enrichment of retroviral vectors bearing the amphotropic envelope was successful. This rapid and scalable viral purification protocol using disposable membrane adsorbers is particularly promising for in vivo experimentation and clinical investigations.


Molecular Therapy | 2012

Long-term Engraftment of Multipotent Mesenchymal Stromal Cells That Differentiate to Form Myogenic Cells in Dogs With Duchenne Muscular Dystrophy

Yuko Nitahara-Kasahara; Hiromi Hayashita-Kinoh; Sachiko Ohshima-Hosoyama; Hironori Okada; Michiko Wada-Maeda; Akinori Nakamura; Takashi Okada; Shin'ichi Takeda

Duchenne muscular dystrophy (DMD) is an incurable genetic disease with early mortality. Multipotent mesenchymal stromal cells (MSCs) are of interest because of their ability to differentiate to form myogenic cells in situ. In the present study, methods were developed to expand cultures of MSCs and to promote the myogenic differentiation of these cells, which were then used in a new approach for the treatment of DMD. MSC cultures enriched in CD271(+) cells grew better than CD271-depleted cultures. The transduction of CD271(+) MSCs with MyoD caused myogenic differentiation in vitro and the formation of myotubes expressing late myogenic markers. CD271(+) MSCs in the myogenic cell lineage transplanted into dog leukocyte antigen (DLA)-identical dogs formed clusters of muscle-like tissue. Intra-arterial injection of the CD271(+) MSCs resulted in engraftment at the site of the cardiotoxin (CTX)-injured muscle. Dogs affected by X-linked muscular dystrophy in Japan (CXMD(J)) treated with an intramuscular injection of CD271(+) MSCs similarly developed muscle-like tissue within 8-12 weeks in the absence of immunosuppression. In the newly formed tissues, developmental myosin heavy chain (dMyHC) and dystrophin were upregulated. These findings demonstrate that a cell transplantation strategy using CD271(+) MSCs may offer a promising treatment approach for patients with DMD.


Gene Therapy | 2011

Improvement of cardiac fibrosis in dystrophic mice by rAAV9-mediated microdystrophin transduction.

Shin Jh; Yuko Nitahara-Kasahara; Hiromi Hayashita-Kinoh; Ohshima-Hosoyama S; Kinoshita K; Tomoko Chiyo; Hironori Okada; Takashi Okada; Shin'ichi Takeda

Duchenne muscular dystrophy (DMD) is the most common form of the progressive muscular dystrophies characterized by defects of the dystrophin gene. Although primarily characterized by degeneration of the limb muscles, cardiomyopathy is a major cause of death. Therefore, the development of curative modalities such as gene therapy is imperative. We evaluated the cardiomyopathic features of mdx mice to observe improvements in response to intravenous administration of recombinant adeno-associated virus (AAV) type 9 encoding microdystrophin. The myocardium was extensively transduced with microdystrophin to significantly prevent the development of fibrosis, and expression persisted for the duration of the study. Intraventricular conduction patterns, such as the QRS complex duration and S/R ratio in electrocardiography, were also corrected, indicating that the transduced microdystrophin has a protective effect on the dystrophin-deficient myocardium. Furthermore, BNP and ANP levels were reduced to normal, suggesting the absence of cardiac dysfunction. In aged mice, prevention of ectopic beats as well as echocardiographic amelioration was also demonstrated with improved exercise performance. These findings indicate that AAV-mediated cardiac transduction with microdystrophin might be a promising therapeutic strategy for the treatment of dystrophin-deficient cardiomyopathy.


Human Molecular Genetics | 2014

Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10

Yuko Nitahara-Kasahara; Hiromi Hayashita-Kinoh; Tomoko Chiyo; Akiyo Nishiyama; Hironori Okada; Shin'ichi Takeda; Takashi Okada

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease that causes respiratory and cardiac failure. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, but its role and regulation in the disease time course has not been sufficiently examined. In the present study, we used IL-10(-/-)/mdx mice lacking both dystrophin and the anti-inflammatory cytokine, interleukin-10 (IL-10), to investigate whether a predisposition to inflammation affects the severity of DMD with advancing age. The IL-10 deficiency caused a profound DMD phenotype in the dystrophic heart such as muscle degeneration and extensive myofiber loss, but the limb muscle and diaphragm morphology of IL-10(-/) (-)/mdx mice was similar to that of mdx mice. Extensive infiltrates of pro-inflammatory M1 macrophages in regeneration of cardiotoxin-injured muscle, altered M1/M2 macrophage phenotype and increased pro-inflammatory cytokines/chemokines production were observed in the diaphragm and heart of IL-10(-/-)/mdx mice. We characterized the IL-10(-/-)/mdx mice as a dystrophic model with chronic inflammation and severe cardiorespiratory dysfunction, as evidenced by decreased percent fractional shortening (%FS) and ejection fraction percent (EF%) on echocardiography, reduced lower tidal volume on whole-body plethysmography. This study suggests that a predisposition to inflammation is an important indicator of DMD disease progression. Therefore, the development of anti-inflammatory strategies may help in slowing down the cardiorespiratory dysfunction on DMD.


Molecular therapy. Methods & clinical development | 2017

Mesenchymal Stem Cells Overexpressing Interleukin-10 Promote Neuroprotection in Experimental Acute Ischemic Stroke

Masataka Nakajima; Chikako Nito; Kota Sowa; Satoshi Suda; Yasuhiro Nishiyama; Aki Nakamura-Takahashi; Yuko Nitahara-Kasahara; Kiwamu Imagawa; Tohru Hirato; Masayuki Ueda; Kazumi Kimura; Takashi Okada

Interleukin (IL)-10 is a contributing factor to neuroprotection of mesenchymal stem cell (MSC) transplantation after ischemic stroke. Our aim was to increase therapeutic effects by combining MSCs and ex vivo IL-10 gene transfer with an adeno-associated virus (AAV) vector using a rat transient middle cerebral artery occlusion (MCAO) model. Sprague-Dawley rats underwent 90 min MCAO followed by intravenous administration of MSCs alone or IL-10 gene-transferred MSCs (MSC/IL-10) at 0 or 3 hr after ischemia reperfusion. Infarct lesions, neurological deficits, and immunological analyses were performed within 7 days after MCAO. 0-hr transplantation of MSCs alone and MSC/IL-10 significantly reduced infarct volumes and improved motor function. Conversely, 3-hr transplantation of MSC/IL-10, but not MSCs alone, significantly reduced infarct volumes (p < 0.01) and improved motor function (p < 0.01) compared with vehicle groups at 72 hr and 7 days after MCAO. Immunological analysis showed that MSC/IL-10 transplantation significantly inhibits microglial activation and pro-inflammatory cytokine expression compared with MSCs alone. Moreover, overexpressing IL-10 suppressed neuronal degeneration and improved survival of engrafted MSCs in the ischemic hemisphere. These results suggest that overexpressing IL-10 enhances the neuroprotective effects of MSC transplantation by anti-inflammatory modulation and thereby supports neuronal survival during the acute ischemic phase.


Molecular Therapy | 2015

Intra-Amniotic rAAV-Mediated Microdystrophin Gene Transfer Improves Canine X-Linked Muscular Dystrophy and May Induce Immune Tolerance

Hiromi Hayashita-Kinoh; Naoko Yugeta; Hironori Okada; Yuko Nitahara-Kasahara; Tomoko Chiyo; Takashi Okada; Shin'ichi Takeda

Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype.


Molecular therapy. Nucleic acids | 2013

Robust Long-term Transduction of Common Marmoset Neuromuscular Tissue With rAAV1 and rAAV9

Hironori Okada; Hidetoshi Ishibashi; Hiromi Hayashita-Kinoh; Tomoko Chiyo; Yuko Nitahara-Kasahara; Yukihiro Baba; Sumiko Watanabe; Shin'ichi Takeda; Takashi Okada

Profiles of recombinant adeno-associated virus (rAAV)-mediated transduction show interspecies differences for each AAV serotype. Robust long-term transgene expression is generally observed in rodents, whereas insufficient transduction is seen in animals with more advanced immune systems. Non-human primates, including the common marmoset, could provide appropriate models for neuromuscular diseases because of their higher brain functions and physiological resemblance to humans. Strategies to induce pathologies in the neuromuscular tissues of non-human primates by rAAV-mediated transduction are promising; however, transgene expression patterns with rAAV transduction have not been elucidated in marmosets. In this study, transduction of adult marmoset skeletal muscle with rAAV9 led to robust and persistent enhanced green fluorescent protein (EGFP) expression that was independent of the muscle fiber type, although lymphocyte infiltration was recognized. Systemic rAAV injection into pregnant marmosets led to transplacental fetal transduction. Surprisingly, the intraperitoneal injection of rAAV1 and rAAV9 into the neonatal marmoset resulted in systemic transduction and persistent transgene expression without lymphocyte infiltration. Skeletal and cardiac muscle were effectively transduced with rAAV1 and rAAV9, respectively. Interestingly, rAAV9 transduction led to intense EGFP signaling in the axons of the corpus callosum. These transduction protocols with rAAV will be useful for investigating gene functions in the neuromuscular tissues and developing gene therapy strategies.


American Journal of Pathology | 2017

Low-Intensity Training and the C5a Complement Antagonist NOX-D21 Rescue the mdx Phenotype through Modulation of Inflammation

Janek Hyzewicz; Jun Tanihata; Mutsuki Kuraoka; Yuko Nitahara-Kasahara; Teiva Beylier; Urs T. Ruegg; Axel Vater; Shin'ichi Takeda

Inflammatory events occurring in dystrophic muscles contribute to the progression of Duchenne muscular dystrophy (DMD). Low-intensity training (LIT) attenuates the phenotype of mdx mice, an animal model for DMD. Therefore, we postulated that LIT could have anti-inflammatory properties. We assessed levels of inflammatory cytokines and infiltrated immune cells in gastrocnemius muscle of mdx mice after LIT. We detected high levels of complement component C5a, chemokine ligand (CCL) 2, CD68+ monocytes/macrophages, and proinflammatory M1 macrophages in muscles of mdx mice. LIT decreased CCL2 levels, increased CD68+ cell numbers, and shifted the macrophage population to the regenerative M2 type. We investigated whether inhibition of C5a or CCL2 with L-aptamers could mimic the effects of LIT. Although no effect of CCL2 inhibition was detected, treatment with the C5a inhibitor, NOX-D21, rescued the phenotype of nonexercised mdx mice, but not of exercised ones. In both cases, the level of CD68+ cells increased and macrophage populations leaned toward the inflammatory M1 type. In muscles of nonexercised treated mice, the level of IL-1 receptor antagonist increased, damage decreased, and fibers were switched toward the glycolytic fast type; in muscles of exercised mice, fibers were switched to the oxidative slow type. These results reveal the effects of LIT on the inflammatory status of mdx mice and suggest that NOX-D21 could be an anti-inflammatory drug for DMD.


Molecular therapy. Methods & clinical development | 2016

Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector

Aki Nakamura-Takahashi; Koichi Miyake; Atsushi Watanabe; Yukihiko Hirai; Osamu Iijima; Noriko Miyake; Kumi Adachi; Yuko Nitahara-Kasahara; Hideaki Kinoshita; Taku Noguchi; Shinichi Abe; Sonoko Narisawa; José Luis Millán; Takashi Shimada; Takashi Okada

Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2−/−) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2−/− mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP.


Inflammation and Regeneration | 2016

Inflammatory predisposition predicts disease phenotypes in muscular dystrophy

Yuko Nitahara-Kasahara; Shin'ichi Takeda; Takashi Okada

Duchenne muscular dystrophy is an incurable genetic disease that presents with skeletal muscle weakness and chronic inflammation and is associated with early mortality. Indeed, immune cell infiltration into the skeletal muscle is a notable feature of the disease pathophysiology and is strongly associated with disease severity. Interleukin (IL)-10 regulates inflammatory immune responses by reducing both M1 macrophage activation and the production of pro-inflammatory cytokines, thereby promoting the activation of the M2 macrophage phenotype. We previously reported that genetic ablation of IL-10 in dystrophic mice resulted in more severe phenotypes, in regard to heart and respiratory function, as evidenced by increased macrophage infiltration, high levels of inflammatory factors in the muscle, and progressive cardiorespiratory dysfunction. These data therefore indicate that IL-10 comprises an essential immune-modulator within dystrophic muscles. In this review, we highlight the pivotal role of the immune system in the pathogenesis of muscular dystrophy and discuss how an increased understanding of the pathogenesis of this disease may lead to novel therapeutic strategies.

Collaboration


Dive into the Yuko Nitahara-Kasahara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kota Sowa

Nippon Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge