Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yulia A. Medvedeva is active.

Publication


Featured researches published by Yulia A. Medvedeva.


Nature | 2017

An atlas of human long non-coding RNAs with accurate 5′ ends

Chung Chau Hon; Jordan A. Ramilowski; Jayson Harshbarger; Nicolas Bertin; Owen J. L. Rackham; Julian Gough; Elena Denisenko; Sebastian Schmeier; Thomas M. Poulsen; Jessica Severin; Marina Lizio; Hideya Kawaji; Takeya Kasukawa; Masayoshi Itoh; A. Maxwell Burroughs; Shohei Noma; Sarah Djebali; Tanvir Alam; Yulia A. Medvedeva; Alison C. Testa; Leonard Lipovich; Chi Wai Yip; Imad Abugessaisa; Mickal Mendez; Akira Hasegawa; Dave Tang; Timo Lassmann; Peter Heutink; Magda Babina; Christine A. Wells

Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.


BMC Genomics | 2014

Effects of cytosine methylation on transcription factor binding sites

Yulia A. Medvedeva; Abdullah M. Khamis; Ivan V. Kulakovskiy; Wail Ba-alawi; Shariful Islam Bhuyan; Hideya Kawaji; Timo Lassmann; Matthias Harbers; Alistair R. R. Forrest; Vladimir B. Bajic

BackgroundDNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.ResultsWe found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.ConclusionsOur results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription.


Nucleic Acids Research | 2013

HOCOMOCO: a comprehensive collection of human transcription factor binding sites models

Ivan V. Kulakovskiy; Yulia A. Medvedeva; Ulf Schaefer; Artem S. Kasianov; Ilya E. Vorontsov; Vladimir B. Bajic; Vsevolod J. Makeev

Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source.


Nucleic Acids Research | 2016

HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models

Ivan V. Kulakovskiy; Ilya E. Vorontsov; Ivan S. Yevshin; Anastasiia V. Soboleva; Artem S. Kasianov; Haitham Ashoor; Wail Ba-alawi; Vladimir B. Bajic; Yulia A. Medvedeva; Fedor A. Kolpakov; Vsevolod J. Makeev

Models of transcription factor (TF) binding sites provide a basis for a wide spectrum of studies in regulatory genomics, from reconstruction of regulatory networks to functional annotation of transcripts and sequence variants. While TFs may recognize different sequence patterns in different conditions, it is pragmatic to have a single generic model for each particular TF as a baseline for practical applications. Here we present the expanded and enhanced version of HOCOMOCO (http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco10), the collection of models of DNA patterns, recognized by transcription factors. HOCOMOCO now provides position weight matrix (PWM) models for binding sites of 601 human TFs and, in addition, PWMs for 396 mouse TFs. Furthermore, we introduce the largest up to date collection of dinucleotide PWM models for 86 (52) human (mouse) TFs. The update is based on the analysis of massive ChIP-Seq and HT-SELEX datasets, with the validation of the resulting models on in vivo data. To facilitate a practical application, all HOCOMOCO models are linked to gene and protein databases (Entrez Gene, HGNC, UniProt) and accompanied by precomputed score thresholds. Finally, we provide command-line tools for PWM and diPWM threshold estimation and motif finding in nucleotide sequences.


PLOS Computational Biology | 2012

Exploring Massive, Genome Scale Datasets with the GenometriCorr Package

Alexander V. Favorov; Loris Mularoni; Leslie Cope; Yulia A. Medvedeva; Andrey A. Mironov; Vsevolod J. Makeev; Sarah J. Wheelan

We have created a statistically grounded tool for determining the correlation of genomewide data with other datasets or known biological features, intended to guide biological exploration of high-dimensional datasets, rather than providing immediate answers. The software enables several biologically motivated approaches to these data and here we describe the rationale and implementation for each approach. Our models and statistics are implemented in an R package that efficiently calculates the spatial correlation between two sets of genomic intervals (data and/or annotated features), for use as a metric of functional interaction. The software handles any type of pointwise or interval data and instead of running analyses with predefined metrics, it computes the significance and direction of several types of spatial association; this is intended to suggest potentially relevant relationships between the datasets. Availability and implementation: The package, GenometriCorr, can be freely downloaded at http://genometricorr.sourceforge.net/. Installation guidelines and examples are available from the sourceforge repository. The package is pending submission to Bioconductor.


PLOS ONE | 2014

Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.

Tanvir Alam; Yulia A. Medvedeva; Hui Jia; James B. Brown; Leonard Lipovich; Vladimir B. Bajic

Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.


Database | 2015

EpiFactors: a comprehensive database of human epigenetic factors and complexes

Yulia A. Medvedeva; Andreas Lennartsson; Rezvan Ehsani; Ivan V. Kulakovskiy; Ilya E. Vorontsov; Pouda Panahandeh; Grigory Khimulya; Takeya Kasukawa; Finn Drabløs

Epigenetics refers to stable and long-term alterations of cellular traits that are not caused by changes in the DNA sequence per se. Rather, covalent modifications of DNA and histones affect gene expression and genome stability via proteins that recognize and act upon such modifications. Many enzymes that catalyse epigenetic modifications or are critical for enzymatic complexes have been discovered, and this is encouraging investigators to study the role of these proteins in diverse normal and pathological processes. Rapidly growing knowledge in the area has resulted in the need for a resource that compiles, organizes and presents curated information to the researchers in an easily accessible and user-friendly form. Here we present EpiFactors, a manually curated database providing information about epigenetic regulators, their complexes, targets and products. EpiFactors contains information on 815 proteins, including 95 histones and protamines. For 789 of these genes, we include expressions values across several samples, in particular a collection of 458 human primary cell samples (for approximately 200 cell types, in many cases from three individual donors), covering most mammalian cell steady states, 255 different cancer cell lines (representing approximately 150 cancer subtypes) and 134 human postmortem tissues. Expression values were obtained by the FANTOM5 consortium using Cap Analysis of Gene Expression technique. EpiFactors also contains information on 69 protein complexes that are involved in epigenetic regulation. The resource is practical for a wide range of users, including biologists, pharmacologists and clinicians. Database URL: http://epifactors.autosome.ru


Nature Biotechnology | 2017

An integrated expression atlas of miRNAs and their promoters in human and mouse

Derek De Rie; Imad Abugessaisa; Tanvir Alam; Erik Arner; Peter Arner; Haitham Ashoor; Gaby Åström; Magda Babina; Nicolas Bertin; A. Maxwell Burroughs; Ailsa Carlisle; Carsten O. Daub; Michael Detmar; Ruslan Deviatiiarov; Alexandre Fort; Claudia Gebhard; Dan Goldowitz; Sven Guhl; Thomas Ha; Jayson Harshbarger; Akira Hasegawa; Kosuke Hashimoto; Meenhard Herlyn; Peter Heutink; Kelly J Hitchens; Chung Chau Hon; Edward Huang; Yuri Ishizu; Chieko Kai; Takeya Kasukawa

MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.


Nucleic Acids Research | 2017

Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals

Marina Lizio; Jayson Harshbarger; Imad Abugessaisa; Shuei Noguchi; Atsushi Kondo; Jessica Severin; Christopher J. Mungall; David J. Arenillas; Anthony Mathelier; Yulia A. Medvedeva; Andreas Lennartsson; Finn Drabløs; Jordan A. Ramilowski; Owen J. L. Rackham; Julian Gough; Robin Andersson; Albin Sandelin; Hans Ienasescu; Hiromasa Ono; Hidemasa Bono; Yoshihide Hayashizaki; Piero Carninci; Alistair R. R. Forrest; Takeya Kasukawa; Hideya Kawaji

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.


Scientific Reports | 2015

Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis mellifera

Abdullah M. Khamis; Adam R. Hamilton; Yulia A. Medvedeva; Tanvir Alam; Intikhab Alam; Magbubah Essack; Boris Umylny; Boris R. Jankovic; Nicholas L. Naeger; Makoto Suzuki; Matthias Harbers; Gene E. Robinson; Vladimir B. Bajic

Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.

Collaboration


Dive into the Yulia A. Medvedeva's collaboration.

Top Co-Authors

Avatar

Vladimir B. Bajic

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Vsevolod J. Makeev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ivan V. Kulakovskiy

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Ilya E. Vorontsov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Abdullah M. Khamis

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Haitham Ashoor

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tanvir Alam

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Artem S. Kasianov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris R. Jankovic

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge