Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yulin Jin is active.

Publication


Featured researches published by Yulin Jin.


BMC Genomics | 2017

Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research

Hisham Abdelrahman; Mohamed ElHady; Acacia Alcivar-Warren; Standish K. Allen; Rafet Al-Tobasei; Lisui Bao; Ben Beck; Harvey D. Blackburn; Brian G. Bosworth; John Buchanan; Jesse A. Chappell; William H. Daniels; Sheng Dong; Rex A. Dunham; Evan Durland; Ahmed Elaswad; Marta Gomez-Chiarri; Kamal Gosh; Ximing Guo; Perry B. Hackett; Terry Hanson; Dennis Hedgecock; Tiffany Howard; Leigh Holland; Molly Jackson; Yulin Jin; Karim Khalil; Thomas Kocher; Tim Leeds; Ning Li

Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries. Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.


Molecular Genetics and Genomics | 2017

Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish

Xiaozhu Wang; Shikai Liu; Chen Jiang; Xin Geng; Tao Zhou; Ning Li; Lisui Bao; Yun Li; Jun Yao; Yujia Yang; Xiaoxiao Zhong; Yulin Jin; Rex A. Dunham; Zhanjiang Liu

The ability to survive hypoxic conditions is important for various organisms, especially for aquatic animals. Teleost fish, representing more than 50xa0% of vertebrate species, are extremely efficient in utilizing low levels of dissolved oxygen in water. However, huge variations exist among various taxa of fish in their ability to tolerate hypoxia. In aquaculture, hypoxia tolerance is among the most important traits because hypoxia can cause major economic losses. Genetic enhancement for hypoxia tolerance in catfish is of great interest, but little was done with analysis of the genetic architecture of hypoxia tolerance. The objective of this study was to conduct a genome-wide association study to identify QTLs for hypoxia tolerance using the catfish 250K SNP array with channel catfish families from six strains. Multiple significant and suggestive QTLs were identified across and within strains. One significant QTL and four suggestive QTLs were identified across strains. Six significant QTLs and many suggestive QTLs were identified within strains. There were rare overlaps among the QTLs identified within the six strains, suggesting a complex genetic architecture of hypoxia tolerance. Overall, within-strain QTLs explained larger proportion of phenotypic variation than across-strain QTLs. Many of genes within these identified QTLs have known functions for regulation of oxygen metabolism and involvement in hypoxia responses. Pathway analysis indicated that most of these genes were involved in MAPK or PI3K/AKT/mTOR signaling pathways that were known to be important for hypoxia-mediated angiogenesis, cell proliferation, apoptosis and survival.


Animal Genetics | 2017

A genome-wide association study of heat stress-associated SNPs in catfish

Yulin Jin; Tao Zhou; Xin Geng; Shikai Liu; Ailu Chen; Jun Yao; Chen Jiang; Suxu Tan; Baofeng Su; Zhanjiang Liu

Heat tolerance is a complex and economically important trait for catfish genetic breeding programs. With global climate change, it is becoming an increasingly important trait. To better understand the molecular basis of heat stress, a genome-wide association study (GWAS) was carried out using the 250xa0K catfish SNP array with interspecific backcross progenies, which derived from crossing female channel catfish with male F1 hybrid catfish (female channel catfishxa0×xa0male blue catfish). Three significant associated SNPs were detected by performing an EMMAX approach for GWAS. The SNP located on linkage group 14 explained 12.1% of phenotypical variation. The other two SNPs, located on linkage group 16, explained 11.3 and 11.5% of phenotypical variation respectively. A total of 14 genes with heat stress related functions were detected within the significant associated regions. Among them, five genes-TRAF2, FBXW5, ANAPC2, UBR1 and KLHL29- have known functions in the protein degradation process through the ubiquitination pathway. Other genes related to heat stress include genes involved in protein biosynthesis (PRPF4 and SYNCRIP), protein folding (DNAJC25), molecule and iron transport (SLC25A46 and CLIC5), cytoskeletal reorganization (COL12A1) and energy metabolism (COX7A2, PLCB1 and PLCB4) processes. The results provide fundamental information about genes and pathways that is useful for further investigation into the molecular mechanisms of heat stress. The associated SNPs could be promising candidates for selecting heat-tolerant catfish lines after validating their effects on larger and various catfish populations.


Molecular Genetics and Genomics | 2017

GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance

Tao Zhou; Shikai Liu; Xin Geng; Yulin Jin; Chen Jiang; Lisui Bao; Jun Yao; Yu Zhang; Jiaren Zhang; Luyang Sun; Xiaozhu Wang; Ning Li; Suxu Tan; Zhanjiang Liu

Disease problems cause major economic losses for the aquaculture industries. In catfish, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the leading disease problem, causing tens of millions of dollars of annual economic losses. In this study, we conducted a genome-wide association study to determine quantitative trait loci (QTL) for resistance against ESC using an interspecific hybrid system. Five hundred fish were used in the analysis and 192 phenotypic extremes were used for genotyping with the catfish 250K SNP arrays. A genomic region on linkage group (LG) 1 was found significantly associated with ESC disease resistance. In addition, two suggestively associated QTL for ESC resistance were identified on LG 12 and LGxa016. The nlrc3 duplicates were identified within all the three QTL, suggesting their importance in association with the QTL. Within the significant QTL on LGxa01, 16 genes with known functions in immunity were identified. Of particular interest is the nck1 gene nearby the most significantly associated SNP. Nck1 was known to function as an adaptor to facilitating the pathogenesis of enteropathogenic Escherichia coli (EPEC) in humans. E. ictaluri and EPEC pathogens belong to the same bacterial family and share many common characteristics. The fact that nck1 is mapped in the QTL and that it was significantly upregulated in channel catfish intestine after ESC challenge suggested its candidacy of being involved in resistance/susceptibility of ESC.


Marine Biotechnology | 2017

Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish

Xiaoxiao Zhong; Xiaozhu Wang; Tao Zhou; Yulin Jin; Suxu Tan; Chen Jiang; Xin Geng; Ning Li; Huitong Shi; Qifan Zeng; Yujia Yang; Zihao Yuan; Lisui Bao; Shikai Liu; Changxu Tian; Eric Peatman; Qi Li; Zhanjiang Liu

Hypoxic condition is common in aquaculture, leading to major economic losses. Genetic analysis of hypoxia tolerance, therefore, is not only scientifically significant, but also economically important. Catfish is generally regarded as being highly tolerant to low dissolved oxygen, but variations exist among various populations, strains, and species. In this study, we conducted a genome-wide association study (GWAS) using the catfish 250xa0K SNP array to identify quantitative trait locus (QTL) associated with tolerance to low dissolved oxygen in the channel catfish × blue catfish interspecific system. Four linkage groups (LG2, LG4, LG23, and LG29) were found to be associated with low oxygen tolerance in hybrid catfish. Multiple significant SNPs were found to be physically linked in genomic regions containing significant QTL for low oxygen tolerance on LG2 and LG23, and in those regions containing suggestively significant QTL on LG2, LG4, LG23, and LG29, suggesting that the physically linked SNPs were genuinely segregating and related with low oxygen tolerance. Analysis of genes within the associated genomic regions suggested that many of these genes were involved in VEGF, MAPK, mTOR, PI3K-Akt, P53-mediated apoptosis, and DNA damage checkpoint pathways. Comparative analysis indicated that most of the QTL at the species level, as analyzed by using the interspecific system, did not overlap with those identified from six strains of channel catfish, confirming the complexity of the genetic architecture of hypoxia tolerance in catfish.


Developmental and Comparative Immunology | 2017

Analysis of apolipoprotein genes and their involvement in disease response of channel catfish after bacterial infection.

Yujia Yang; Qiang Fu; Tao Zhou; Yun Li; Shikai Liu; Qifan Zeng; Xiaozhu Wang; Yulin Jin; Changxu Tian; Zhenkui Qin; Rex A. Dunham; Zhanjiang Liu

ABSTRACT Apolipoproteins are protein component of plasma lipoproteins. They exert crucial roles in lipoprotein metabolism and serve as enzyme cofactors, receptor ligands, and lipid transfer carriers in mammals. In teleosts, apolipoproteins are also involved in diverse processes including embryonic and ontogenic development, liver and digestive system organogenesis, and innate immunity. In this study, we identified a set of 19 apolipoprotein genes in channel catfish (Ictalurus punctatus). Phylogenetic analysis and syntenic analysis were conducted to determine their identities and evolutionary relationships. The expression signatures of apolipoproteins in channel catfish were determined in healthy tissues and after infections with two major bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. In healthy channel catfish, most apolipoprotein genes exhibited tissue‐specific expression patterns in channel catfish. After ESC and columnaris infections, 5 and 7 apolipoprotein genes were differentially expressed respectively, which presented a pathogen‐specific and time‐dependent pattern of regulation. After ESC infection, three exchangeable apolipoproteins (apoA‐IB, apoC‐I, and apoE‐B) were suppressed in catfish intestine, while two nonexchangeable apolipoproteins (apoB‐A and apoB‐B) were slightly up‐regulated. After columnaris infection, apoB‐B, apoD‐B, and apoE‐A were significantly down‐regulated in catfish gill, while apoF, apoL‐IV, apoO‐like, and apo‐14 kDa showed significantly up‐regulation. Taken together, these results suggested that apolipoprotein genes may play significant roles in innate immune responses to bacterial pathogens in channel catfish. HighlightsA complete set of 19 apolipoprotein genes were identified in channel catfish.The 19 apolipoprotein genes were annotated by phylogenetic and syntenic analysis.Differentially expressed apolipoprotein genes were identified after bacterial infections.


Molecular Genetics and Genomics | 2018

Identification of novel genes significantly affecting growth in catfish through GWAS analysis

Ning Li; Tao Zhou; Xin Geng; Yulin Jin; Xiaozhu Wang; Shikai Liu; Xiaoyan Xu; Dongya Gao; Qi Li; Zhanjiang Liu

Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250xa0K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfishxa0×xa0male blue catfish) with female channel catfish. A genomic region of approximately 1xa0Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.


Developmental and Comparative Immunology | 2017

The NCK and ABI adaptor genes in catfish and their involvement in ESC disease response

Tao Zhou; Ning Li; Shikai Liu; Yulin Jin; Qiang Fu; Sen Gao; Yang Liu; Zhanjiang Liu

&NA; Adaptor proteins non‐catalytic region of tyrosine kinase (NCK) and Abelson interactor (ABI) are crucial for disease response. NCK1 was identified to be a candidate gene for enteric septicemia of catfish (ESC) disease resistance, and was speculated to play similar roles during ESC and enteropathogenic Escherichia coli (EPEC) pathogenicity. ABI1 was reported as a positional candidate gene for bacterial cold water disease (BCWD) resistance in rainbow trout. In this study, three NCK genes and six ABI genes were identified in the channel catfish (Ictalurus punctatus) genome and blue catfish (I. furcatus) transcriptome, and annotated by domain structures, phylogenetic and syntenic analyses. Their expression patterns were examined in the intestine and liver of catfish after challenge with Edwardsiella ictaluri. In the intestine, NCK1, ABI2a, ABI2b, ABI3a were differentially expressed after E. ictaluri infection. In the liver, NCK2a, NCK2b, ABI1b, ABI2a, ABI2b were significantly upregulated in ESC susceptible fish. In general, the NCK and ABI genes, with exception of ABI3a gene and NCK1 gene, were expressed at higher levels in susceptible fish after infection than in control fish, but were expressed at lower levels in resistant fish than in the control fish. Taken together, these results support the notion that NCK and ABI genes are involved in disease processes facilitating pathogenesis of the E. ictaluri bacteria. HighlightsThree NCK genes and six ABI genes were identified in channel catfish and blue catfish respectively.The NCK and ABI genes were annotated by phylogenetic and syntenic analyses.The majority of NCK and ABI genes were expressed at higher levels in ESC susceptible fish than in ESC resistant fish.


Molecular Genetics and Genomics | 2018

GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish

Suxu Tan; Tao Zhou; Wenwen Wang; Yulin Jin; Xiaozhu Wang; Xin Geng; Jian Luo; Zihao Yuan; Yujia Yang; Huitong Shi; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690xa0K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.


Molecular Genetics and Genomics | 2018

Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish

Huitong Shi; Tao Zhou; Xiaozhu Wang; Yujia Yang; Chenglong Wu; Shikai Liu; Lisui Bao; Ning Li; Zihao Yuan; Yulin Jin; Suxu Tan; Wenwen Wang; Xiaoxiao Zhong; Guyu Qin; Xin Geng; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfishu2009×u2009blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.

Collaboration


Dive into the Yulin Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge