Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yun-Xia Sun is active.

Publication


Featured researches published by Yun-Xia Sun.


Biomaterials | 2008

The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes

Yun-Xia Sun; Xuan Zeng; Qing-Fei Meng; Xian-Zheng Zhang; Si-Xue Cheng; Ren-Xi Zhuo

Arginine-glycine-aspartic acid (RGD) ligand is often chemically attached to polycation vector to improve the transfection efficiency. However, the chemical reaction may reduce or even inactivate the biological activities of peptides. In order to retain the targeting ability and biological activities, the RGD peptide was noncovalently introduced into polycations as gene delivery systems. In this paper, the tripeptide sequence RGD was added to disulfide-containing polyethyleneimine (SS-PEI)/DNA binary complexes to evaluate the influence of RGD addition for the particle size, zeta potential, morphology, and transfection efficiency. GelRed was used as a molecular probe to show the effect of RGD addition on the cellular uptake of complexes. In vitro transfection experiments showed that SS-PEI exhibited comparable transfection efficiency, but lower cytotoxicity in comparison with 25kDa PEI. The transfection efficiency of complexes with RGD in HeLa cells was reduced statistically significantly with the increasing content of RGD peptide, but that in 293T cells was not altered significantly with the increasing content of RGD peptide. The reduced transfection efficiency of SS-PEI/DNA complexes with RGD in HeLa cells was attributed to the targeted binding interactions between the surplus RGD and the alpha(nu)beta(3) and alpha(nu)beta(5) integrins in HeLa cells, which would prevent the binding between RGD in complexes and integrin receptor on the surface of cells as well as nonspecific endocytosis of SS-PEI/DNA complexes mediated by proteoglycan in HeLa cells.


Journal of Controlled Release | 2011

Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei

Hui-Yuan Wang; Jing-Xiao Chen; Yun-Xia Sun; Ji-Zhe Deng; Cao Li; Xian-Zheng Zhang; Ren-Xi Zhuo

Cellular uptake and nuclear localization are two barriers to gene delivery. Here, we designed new gene delivery carriers with an N-terminal stearylated (STR) nuclear localization signal (NLS), PKKKRKV, present in the Simian Virus 40 large T antigen with the aim to overcome limitations, such as cell membrane and nuclear pores, offering attractive possibilities to enhance gene delivery. Four vectors with different structures of N-stearylated nuclear localization signal-octaarginine peptide (STR-PKKKRKV-R(8) or STR-NLS-R(8), STR-VKRKKKP-R(8) or STR-reverse NLS-R(8), PKKKRKV-R(8) or NLS-R(8), and VKRKKKP-R(8) or reverse NLS-R(8)) were compared. The gene expression mediated by these vectors in dividing and non-dividing cells (both in 293T and HeLa cell lines) was investigated. The most efficient N/P ratio was 4 for STR-PKKKRKV-R(8,) STR-VKRKKKP-R(8,) and 0.25 for PKKKRKV-R(8), VKRKKKP-R(8.) The maximum transfection activity of these vehicles (VKRKKKP-R(8)) was up to 80% as effective as jetPEI™ and the vehicles did not exhibit cytotoxicity. Interestingly, N-stearylated peptides presented lower transfection activity compared to peptides without N-stearylation at lower N/P ratios (0.25 to 1). Confocal study showed that the vectors could effectively promote the nuclear translocation.


Biomacromolecules | 2008

Biodegradable and pH-Sensitive Hydrogels for Cell Encapsulation and Controlled Drug Release

De-Qun Wu; Yun-Xia Sun; Xiao-Ding Xu; Si-Xue Cheng; Xian-Zheng Zhang; Ren-Xi Zhuo

Hydrogels with pH-sensitive poly(acrylic acid) (PAAc) chains and biodegradable acryloyl-poly(-caprolactone)-2-hydroxylethyl methacrylate (AC-PCL-HEMA) chains were designed and synthesized. The morphology of hydrogel was observed by scanning electron microscopy. The degradation of the hydrogel in the presence of Pseudomonas lipase was studied. The in vitro release of bovine serum albumin from the hydrogel was investigated. Cytotoxicity study shows that the AC-PCL-HEMA/AAc copolymer exhibits good biocompatibility. Cell adhesion and migration into the hydrogel networks were evaluated by using different cell lines. The hydrogel with a lower cross-linking density and a larger pore size exhibited a better performance for cells migration.


Journal of Controlled Release | 2008

Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors

Yun-Xia Sun; Wang Xiao; Si-Xue Cheng; Xian-Zheng Zhang; Ren-Xi Zhuo

Gene vectors, (dextran-hexamethylenediisocyanate)-g-polyethylenimines ((Dex-HMDI)-g-PEIs), were synthesized through grafting low molecular weight (800 Da) branched polyethylenimine (PEI) to HMDI functionalized dextrans with two different molecular weights. The buffer capabilities of (Dex-HMDI)-g-PEIs were examined by acid-base titration. The titration profiles show that both (Dex-HMDI)-g-PEIs have the similar buffer capability regardless of the different molecular weight of dextran. Physiochemical characteristics of (Dex-HMDI)-g-PEI/DNA complexes were analyzed by agarose gel electrophoresis, and particle size and zeta-potential measurements. The result of gel electrophoresis suggests that both (Dex-HMDI)-g-PEIs are able to condense DNA efficiently at N/P ratios higher than 4. The particle sizes of (Dex-HMDI)-g-PEI/DNA complexes are around 160-250 nm, and the surface charges are around 19-23 mV at the N/P ratios ranging from 10 to 60. The morphology of complexes was observed by scanning electron microscopy (SEM) and the images show that nano-sized complexes display a regular spherical shape. In vitro cell viability and transfection were evaluated in 293T and HeLa cells using 25 kDa PEI as a control. The cytotoxicity of (Dex-HMDI)-g-PEIs is lower than that of 25 kDa PEI. The gene transfection efficiency of (Dex-HMDI)-g-PEI/DNA complexes at certain N/P ratios in 293T cells is higher than or comparable to 25 kDa PEI/DNA complex at its optimal N/P ratio of 10. In addition, comparing with (Dex-HMDI)-g-PEI with a high molecular weight dextran, (Dex-HMDI)-g-PEI with a low molecular weight dextran demonstrates lower cytotoxicity and higher transfection efficiency.


Acta Biomaterialia | 2010

PEGylated PEI-based biodegradable polymers as non-viral gene vectors

Fu-Wei Huang; Hui-Yuan Wang; Cao Li; Hua-fen Wang; Yun-Xia Sun; Jun Feng; Xian-Zheng Zhang; Ren-Xi Zhuo

Novel functional biodegradable gene vectors, poly(L-succinimide)-g-polyethylenimines-g-poly(ethylene glycol) (PSI-g-PEI-g-PEGs) were synthesized by conjugating methoxy poly(ethylene glycol) (mPEG, M(w)=750 Da) to PEI segments (M(w)=800 Da) of PSI-g-PEI. The physicochemical properties of PSI-g-PEI-g-PEGs, including buffering capability, pDNA binding ability, cytotoxicity, zeta potential and the particle size of polymer/pDNA complexes, were explored. The influence of PEGylation was discussed based on a comparative study of PSI-g-PEI-g-PEGs, PSI-g-PEI and PEI25k (M(w)=25 kDa). SEM images revealed that PSI-g-PEI-g-PEG/pDNA particles have a regular shape with the diameter ranging from 70 to 170 nm. PEGylation could suppress the aggregation occurrence between complexes, resulting in a reduction of the polymer/pDNA complex size. PSI-g-PEI-g-PEGs exhibited remarkably lower cytotoxicity compared to PSI-g-PEI and PEI25k. In 293T and HeLa cells, the obtained PSI-g-PEI-g-PEGs showed very high transfection efficiency compared to PEI25k. Fluorescent confocal microscopy demonstrated that PSI-g-PEI-g-PEGs could effectively transport pGL-3 plasmids into the nuclei of HeLa cells. Taking into account the continued high transfection efficacy and decreased toxicity after PEG modification, PSI-g-PEI-g-PEGs show great potential as the non-viral vectors for gene transfection.


Bioconjugate Chemistry | 2010

Effect of Molecular Weight and Degree of Substitution of Quaternized Cellulose on the Efficiency of Gene Transfection

Yongbo Song; Hui-Yuan Wang; Xuan Zeng; Yun-Xia Sun; Xian-Zheng Zhang; Jinping Zhou

Quaternized celluloses (QCs) with different molecular weight (M(w)) and degree of cationic substitution (DS) were homogeneously synthesized in NaOH/urea aqueous solutions and were studied as gene carriers. QCs were evaluated for efficacy of nanoparticle formation, DNA binding efficiency, morphology, and in vitro gene transfection efficiency. The factors affecting the transfection efficiency, e.g., M(w), DS, and N/P ratios, have been evaluated. The cytotoxicity of QCs and QC/DNA complexes were evaluated in 293T cells and were found to be relatively low compared with 25 kDa PEI and PEI/DNA complex, which increased slightly with increasing of M(w) and DS. All QCs obtained could bind DNA efficiently, and QC/DNA complexes exhibited effective transfection in comparison to the naked DNA. More importantly, the QC/DNA complexes, were stable and the transfection efficiency was not inhibited in the presence of serum. The results revealed an important combined effect between M(w) and DS of QCs in determining transgene expression, and QCs with M(w) of about 8 x 10(4) g/mol and DS of about 0.6 displayed relatively higher transfection efficiencies attributed to the intermediate stability.


Biomaterials | 2009

Protamine sulfate/poly(l-aspartic acid) polyionic complexes self-assembled via electrostatic attractions for combined delivery of drug and gene

Han Cheng; Yongyong Li; Xuan Zeng; Yun-Xia Sun; Xian-Zheng Zhang; Ren-Xi Zhuo

In this study, a series of self-assembled polyionic complexes (PICs) were prepared via electrostatic attraction between protamine sulfate (PS) and poly(L-aspartic acid) (PASP) or doxorubicin (DOX)-conjugated PASP (DOX-PASP). The size of the PICs measured by Nano-ZS ZEN3600 was around 200-300 nm at different weight ratios of PS/PASP. Transmission electron microscopy (TEM) showed that PS/PASP PICs displayed a regular spherical shape and no aggregation was observed. The cytotoxicity study indicated that the PICs did not exhibit apparent cytotoxicity in comparison with that of 25 kDa polyethylenimine (PEI). Gel retardation assay indicated that the PICs were able to bind DNA completely when weight ratio of PS/PASP was higher than 2:1. Luciferase assay and green fluorescent protein (GFP) detection were used to confirm that the PICs could be used as efficient non-viral gene vectors and they exhibited comparable transfection efficiency with the one of 25 kDa PEI. Furthermore, confocal laser scanning microscopy as well as suppression activity of DOX-conjugated PICs (DOX-PICs) showed that they could quickly release the loaded DOX into HeLa cells, indicating that PICs can be also used as carriers for combined delivery of drug and gene.


Bioconjugate Chemistry | 2008

Novel Thermoresponsive Nonviral Gene Vector: P(NIPAAm-co-NDAPM)-b-PEI with Adjustable Gene Transfection Efficiency

Han Cheng; Jing-Ling Zhu; Yun-Xia Sun; Si-Xue Cheng; Xian-Zheng Zhang; Ren-Xi Zhuo

A thermoresponsive cationic copolymer, poly( N-isopropylacrylamide- co- N-(3-(dimethylamino)propyl)methacrylamide)- b-polyethyleneimine (P(NIPAAm- co-NDAPM)- b-PEI), was designed and synthesized as a potential nonviral gene vector. The lower critical solution temperature (LCST) of P(NIPAAm- co-NDAPM)- b-PEI in water measured by UV-vis spectroscopy was 38 degrees C. P(NIPAAm- co-NDAPM)- b-PEI as the gene vector was evaluated in terms of cytotoxicity, buffer capability determined by acid-base titration, DNA binding capability characterized by agarose gel electrophoresis and particle size analysis, and in vitro gene transfection. P(NIPAAm- co-NDAPM)- b-PEI copolymer exhibited lower cytotoxicity in comparison with 25 kDa PEI. Gel retardation assay study indicated that the copolymer was able to bind DNA completely at N/P ratios higher than 30. At 27 degrees C, the mean particle sizes of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes decreased from 1200 to 570 nm corresponding to the increase in N/P ratios from 10 to 60. When the temperature changed to 37 degrees C, the mean particle sizes of complexes decreased from 850 to 450 nm correspondingly within the same N/P ratio range due to the collapse of thermoresponsive PNIPAAm segments. It was found that the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes was higher than or comparable to that of 25 kDa PEI/DNA complexes at their optimal N/P ratios. Importantly, the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes could be adjusted by altering the transfection and cell culture temperature.


Acta Biomaterialia | 2011

Poly(β-amino amine) cross-linked PEIs as highly efficient gene vectors.

Ji-Zhe Deng; Yun-Xia Sun; Hui-Yuan Wang; Cao Li; Fu-Wei Huang; Si-Xue Cheng; Ren-Xi Zhuo; Xian-Zheng Zhang

To increase the release of DNA into the cytoplasm and further improve transgene expression of nucleic acid novel polymeric gene carriers were prepared which would be biodegradable under the reducing conditions in the cytoplasm. Disulfide-containing poly(β-amino amine)s were first synthesized and then used to cross-link low molecular weight polyethyleneimine (1800 Da) through Michael addition to obtain SS-PBAA-PEIs as the final gene carriers. The physicochemical characteristics of SS-PBAA-PEI/DNA complexes were characterized. In vitro transfection mediated by the SS-PBAA-PEIs under serum conditions was carried out. Cell uptake of the gene delivery systems was observed by confocal laser scanning microscopy. The results of the physicochemical characterisation demonstrated that the SS-PBAA-PEIs could efficiently condense DNA. In vitro transfection under serum conditions showed that SS-PBAA-PEIs had comparable or even higher transfection efficiencies than 25 kDa PEI. And SS-PBAA-PEIs showed much lower cytotoxicity compared with 25 kDa PEI. In summary, the SS-PBAA-PEIs possess great potential as non-viral gene vectors and exhibit high transfection efficiency under serum conditions.


Acta Biomaterialia | 2012

A linear-dendritic cationic vector for efficient DNA grasp and delivery

Bin Yang; Yun-Xia Sun; Wen-Jie Yi; Juan Yang; Chen-Wei Liu; Han Cheng; Jun Feng; Xian-Zheng Zhang; Ren-Xi Zhuo

This paper presents an attempt to design an efficient and biocompatible cationic gene vector via structural optimization that favors the efficient utilization of amine groups for DNA condensation. To this end, a linear-dendritic block copolymer of methoxyl-poly(ethylene glycol)-dendritic polyglycerol-graft-tris(2-aminoethyl)amine (mPEG-DPG-g-TAEA) was prepared with specially designed multiple functions including strong DNA affinity, endosomal buffering and expected serum-tolerance. Based on the transfection in serum-free and serum-conditioned media, the influences of the polymer structures including the degree of polymerization of DPG and TAEA substitution degree were explored. As compared to polyethylenimine (M(w)=5 kDa) (PEI5k) with similar molecular weight and higher amine density, mPEG-DPG-g-TAEA displayed comparably high DNA affinity due to the special linear-dendritic architecture. Consequently, at very low N/P ratio, mPEG-DPG-g-TAEA vectors could mediate efficient in vitro luciferase expression at levels that are comparable with or even superior to the commercially available Lipofectamine™ 2000, while being apparently higher than PEI5k. The designed vectors exhibit considerably higher cell biocompatibility and better resistance against bovine serum albumin adsorption than PEI5k. The stability of the complexes on coincubation with heparin was found to be largely dependent on the polymer structure. As concluded from the comparative transfection study in the absence/presence of chloroquine, it is likely that the polycation itself could produce endosomal buffering. This linear-dendritic vector shows promising potential for the application of gene delivery.

Collaboration


Dive into the Yun-Xia Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge