Yun-Ying Cao
Nantong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yun-Ying Cao.
BioMed Research International | 2013
Yun-Ying Cao; Qian Zhang; Yanhong Chen; Hua Zhao; Youzhong Lang; Chunmei Yu; Jianchang Yang
High temperature impedes the growth and productivity of various crop species. To date, rice (Oryza sativa L.) has not been exploited to understand the molecular basis of its abnormally high level of temperature tolerance. To identify transcripts induced by heat stress, twenty-day-old rice seedlings of different rice cultivars suffering from heat stress were treated at different times, and differential gene expression analyses in leaves were performed by cDNA-AFLP and further verified by real-time RT-PCR. In aggregate, more than three thousand different fragments were indentified, and 49 fragments were selected for the sequence and differential expressed genes were classified functionally into different groups. 6 of 49 fragments were measured by real-time RT-PCR. In addition, the variations of three different polyamine contents in response to heat stress through high-performance liquid chromatography (HPLC) analysis were also performed. The results and their direct and indirect relationships to heat stress tolerance mechanism were discussed.
Plant Journal | 2017
Fu-Yuan Zhu; Mo-Xian Chen; Nenghui Ye; Lu Shi; Kai-Long Ma; Jing-Fang Yang; Yun-Ying Cao; Youjun Zhang; Takuya Yoshida; Alisdair R. Fernie; Guang-Yi Fan; Bo Wen; Ruo Zhou; Tie-Yuan Liu; Tao Fan; Bei Gao; Di Zhang; Ge-Fei Hao; Shi Xiao; Ying-Gao Liu; Jianhua Zhang
In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.
Biologia Plantarum | 2016
Yun-Ying Cao; Yanhong Chen; M. X. Chen; Zhiqin Wang; C. F. Wu; X. C. Bian; Jianchang Yang; Jianhua Zhang
Heat stress severely reduces rice yield and quality; however, differences between the superior, early-flowering and inferior, later-flowering spikelets of indica rice in response to high-temperature stress during grain filling remain unclear. This study investigated the effects of high temperature (HT, 33.6/20.7 °C day/night) on growth, endosperm structure, and hormone and polyamine content of superior and inferior spikelets of heat-sensitive (SG-1) and heat-tolerant (HHZ) indica cultivars. The HT decreased fertilization rate, caused earlier grain filling, and reduced duration of grain filling, thus resulting in decreased grain mass and a poor endosperm structure. In addition, soluble sugar and sucrose content increased, and starch synthesis decreased by HT at the early stage of grain filling. The HT increased polyamine [spermidine (Spd) and spermine (Spm)] and abscisic acid (ABA) content, but reduced zeatin (Z) + zeatin riboside (ZR) and indole-3-acetic acid (IAA) content in the grains. Such effects were more apparent in the inferior than superior spikelets; however, the inferior spikelets of SG-1 were more affected than those of HHZ. At the middle grain filling stage, HT produced little difference between the two cultivars. Our results suggest that the poor development of inferior spikelets of SG-1 under the HT could be attributed, at least in part, to the changed content and ratios of free polyamines [putrescine (Put), Spd, and Spm] and phytohormones (Z+ZR, IAA, and ABA) and the conversion efficiency of sucrose into starch.
Biologia Plantarum | 2018
Yanhong Chen; Yun-Ying Cao; Lingjuan Wang; L. M. Li; J. Yang; M. X. Zou
The MYB transcription factor superfamily is a large gene family that plays central roles in developmental processes and defence responses in plants. Unlike in Arabidopsis, only few members of the R2R3-MYB gene family have been functionally well characterized in maize, especially in abiotic stress-response pathways. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. A comparative genomics study using Arabidopsis abiotic stress-responsive MYB protein sequences identified 46 ZmMYB genes that may be involve in abiotic stress responses of Zea mays. An expression pattern analysis of the 46 ZmMYB genes under abiotic stress treatments was used to identify 22 MYB genes that were induced by one or more of the stress treatments. ZmMYB30 was highly upregulated under the four stress treatments. The ectopic expression of ZmMYB30 in transgenic Arabidopsis plants promoted salt-stress tolerance and also increased the expression of a number of abiotic stress-related genes, allowing the plants to overcome adverse conditions.
Frontiers in Plant Science | 2016
Fu-Yuan Zhu; Mo-Xian Chen; Yu-Wen Su; Xuezhong Xu; Nenghui Ye; Yun-Ying Cao; Sheng Lin; Tie-Yuan Liu; Haoxuan Li; Guan-Qun Wang; Yu Jin; Yong-Hai Gu; Wai-Lung Chan; Clive Lo; Xinxiang Peng; Guohui Zhu; Jianhua Zhang
Modern rice cultivars have large panicle but their yield potential is often not fully achieved due to poor grain-filling of late-flowering inferior spikelets (IS). Our earlier work suggested a broad transcriptional reprogramming during grain filling and showed a difference in gene expression between IS and earlier-flowering superior spikelets (SS). However, the links between the abundances of transcripts and their corresponding proteins are unclear. In this study, a SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) -based quantitative proteomic analysis has been applied to investigate SS and IS proteomes. A total of 304 proteins of widely differing functionality were observed to be differentially expressed between IS and SS. Detailed gene ontology analysis indicated that several biological processes including photosynthesis, protein metabolism, and energy metabolism are differentially regulated. Further correlation analysis revealed that abundances of most of the differentially expressed proteins are not correlated to the respective transcript levels, indicating that an extra layer of gene regulation which may exist during rice grain filling. Our findings raised an intriguing possibility that these candidate proteins may be crucial in determining the poor grain-filling of IS. Therefore, we hypothesize that the regulation of proteome changes not only occurs at the transcriptional, but also at the post-transcriptional level, during grain filling in rice.
Plant Journal | 2018
Nenghui Ye; Feng-Zhu Wang; Lu Shi; Mo-Xian Chen; Yun-Ying Cao; Fu-Yuan Zhu; Yi-Zhen Wu; Li-Juan Xie; Tie-Yuan Liu; Ze-Zhuo Su; Shi Xiao; Hao Zhang; Jianchang Yang; Hai-Yong Gu; Xuan-Xuan Hou; Qi-Juan Hu; Hui-Juan Yi; Chang-Xiang Zhu; Jianhua Zhang; Ying-Gao Liu
Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.
PLOS ONE | 2017
Yun-Ying Cao; Xiao-Chun Bian; Mo-Xian Chen; Liru Xia; Jianhua Zhang; Fu-Yuan Zhu; Chunfang Wu
Vernalization is classically defined as the induction of flowering process by exposure of the plants to a prolonged cold condition. Normally, it is considered as a precondition of flowering. Vicia faba, commonly known as faba bean, belongs to family Fabaceae. It is one of the plant species that has been cultivated in the earliest human settlements. In this study, an iTRAQ-LC-MS/MS-based quantitative proteomic analysis has been conducted to compare the vernalized faba bean seedlings and its corresponding control. In total, 91 proteins from various functional categories were observed to be differentially accumulated in vernalized faba bean seedlings. Subsequent gene ontology analysis indicated that several biological processes or metabolic pathways including photosynthesis and phytic acid metabolism were differentially respond to vernalization in comparison to the control sample. Further investigation revealed that a family of proteins nominated as glycine-rich RNA-binding factor was accumulated in vernalized seedlings, indicating an extra layer of regulation by alternative splicing on transcript abundance in response to vernalization. These findings raise a possibility that these candidate proteins could be important to represent the responsive network under vernalization process. Therefore, we propose that the regulation of vernalization in faba bean not only occurs at the transcriptional level as previously reported, but also at the post-transcriptional level.
Frontiers in Plant Science | 2017
Yun-Ying Cao; Jing-Fang Yang; Tie-Yuan Liu; Zhen-Feng Su; Fu-Yuan Zhu; Mo-Xian Chen; Tao Fan; Nenghui Ye; Zhen Feng; Lingjuan Wang; Ge-Fei Hao; Jianhua Zhang; Ying-Gao Liu
Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze β-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been observed in this family, suggesting their potential redundant functions in various biological processes. In this study, we have used 304 sequences of plant GH1 hydrolases to study the evolution of this gene family in plant lineage. Gene duplication was found to be a common phenomenon in this gene family. Although many members of GH1 hydrolases showed a high degree of similarity in Arabidopsis and rice, they showed substantial tissue specificity and differential responses to various stress treatments. This differential regulation implies each enzyme may play a distinct role in plants. Furthermore, some of salt-responsive Arabidopsis GH1 hydrolases were selected to test their genetic involvement in salt responses. The knockout mutants of AtBGLU1 and AtBGLU19 were observed to be less-sensitive during NaCl treatment in comparison to the wild type seedlings, indicating their participation in salt stress response. In summary, Arabidopsis and rice GH1 glycoside hydrolases showed distinct features in their evolutionary path, transcriptional regulation and genetic functions.
bioRxiv | 2018
Mo-Xian Chen; Fu-Yuan Zhu; Feng-Zhu Wang; Neng-Hui Ye; Bei Gao; Xi Chen; Shan-Shan Zhao; Tao Fan; Yun-Ying Cao; Tie-Yuan Liu; Ze-Zhuo Su; Li-Juan Xie; Qi-Juan Hu; Hui-Jie Wu; Shi Xiao; Jianhua Zhang; Ying-Gao Liu
Post-transcriptional mechanisms, including alternative splicing (AS) and alternative translation initiation (ATI), have been used to explain the protein diversity involved in plant developmental processes and stress responses. Rice germination under hypoxia conditions is a classical model system for the study of low oxygen stress. It is known that there is transcriptional regulation during rice hypoxic germination, but the potential roles of AS and ATI in this process are not well understood. In this study, a proteogenomic approach was used to integrate the data from RNA sequencing, qualitative and quantitative proteomics to discover new players or pathways in the response to hypoxia stress. The improved analytical pipeline of proteogenomics led to the identification of 10,253 intron-containing genes, 1,729 of which were not present in the current annotation. Approximately 1,741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds in comparison to controls. Over 95% of these were not present in the list of differentially expressed genes (DEG). In particular, regulatory pathways such as spliceosome, ribosome, ER protein processing and export, proteasome, phagosome, oxidative phosphorylation and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of traditional transcriptional regulation. Massive AS changes were identified, including the preference usage of certain non-conventional splice sites and enrichment of splicing factors in the DAS datasets. In addition, using self-constructed protein libraries by 6-frame translation, thousands of novel proteins/peptides contributed by ATI were identified. In summary, these results provide deeper insights towards understanding the underlying mechanisms of AS and ATI during rice hypoxic germination.
Plant Methods | 2018
Fu-Yuan Zhu; Mo-Xian Chen; Neng-Hui Ye; Wang-Min Qiao; Bei Gao; Wai-Ki Law; Yuan Tian; Dong Zhang; Di Zhang; Tie-Yuan Liu; Qi-Juan Hu; Yun-Ying Cao; Ze-Zhuo Su; Jianhua Zhang; Ying-Gao Liu
BackgroundThe next-generation sequencing (NGS) technology has greatly facilitated genomic and transcriptomic studies, contributing significantly in expanding the current knowledge on genome and transcriptome. However, the continually evolving variety of sequencing platforms, protocols and analytical pipelines has led the research community to focus on cross-platform evaluation and standardization. As a NGS pioneer in China, the Beijing Genomics Institute (BGI) has announced its own NGS platform designated as BGISEQ-500, since 2016. The capability of this platform in large-scale DNA sequencing and small RNA analysis has been already evaluated. However, the comparative performance of BGISEQ-500 platform in transcriptome analysis remains yet to be elucidated. The Illumina series, a leading sequencing platform in China’s sequencing market, would be a preferable reference to evaluate new platforms.MethodsTo this end, we describe a cross-platform comparative study between BGISEQ-500 and Illumina HiSeq4000 for analysis of Arabidopsis thaliana WT (Col 0) transcriptome. The key parameters in RNA sequencing and transcriptomic data processing were assessed in biological replicate experiments, using aforesaid platforms.ResultsThe results from the two platforms BGISEQ-500 and Illumina HiSeq4000 shared high concordance in both inter- (correlation, 0.88–0.93) and intra-platform (correlation, 0.95–0.98) comparison for gene quantification, identification of differentially expressed genes and alternative splicing events. However, the two platforms yielded highly variable interpretation results for single nucleotide polymorphism and insertion–deletion analysis.ConclusionThe present case study provides a comprehensive reference dataset to validate the capability of BGISEQ-500 enabling it to be established as a competitive and reliable platform in plant transcriptome analysis.