Zhangyong Hong
Nankai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhangyong Hong.
Angewandte Chemie | 2014
Yi-Ming Li; Yi-Tong Li; Man Pan; Xiu‐Qi Kong; Yichao Huang; Zhangyong Hong; Lei Liu
Sortase-mediated hydrazinolysis of proteins with hydrazine or its derivatives was developed for the production of recombinant protein hydrazides. This process provides an alternative approach for protein semisynthesis through the use of recombinant protein hydrazides as thioester surrogates. It also provides an alternative method for C-terminal modification of proteins with functional units as well as for the preparation of C-to-C fusion proteins.
Angewandte Chemie | 2015
Jiaxing Wang; Ge‐Min Fang; Yao He; Da‐Liang Qu; Min Yu; Zhangyong Hong; Lei Liu
Fully unprotected peptide o-aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o-aminoanilides as a new type of crypto-thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o-aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q.
Journal of Immunology | 2011
Na Zhao; Jianlei Hao; Yuanyuan Ni; Wei Luo; Ruifang Liang; Guangchao Cao; Yapu Zhao; Puyue Wang; Liqing Zhao; Zhigang Tian; Richard A. Flavell; Zhangyong Hong; Jihong Han; Zhi Yao; Zhenzhou Wu; Zhinan Yin
Con A-induced fulminant hepatitis is a well-known animal model for acute liver failure. However, the role of γδ T cells in this model is undefined. In this report, using TCR δ−/− mice, we demonstrated a protective role of γδ T cells in Con A-induced hepatitis model. TCR δ−/− mice showed significantly decreased levels of IL-17A and IL-17F in the Con A-treated liver tissue, and reconstitution of TCR δ−/− mice with wild-type (Wt), but not IL-17A−/−, γδ T cells significantly reduced hepatitis, strongly suggesting a critical role of IL-17A in mediating the protective effect of γδ T cells. Interestingly, only Vγ4, but not Vγ1, γδ T cells exerted such a protective effect. Furthermore, depletion of NKT cells in TCR δ−/− mice completely abolished hepatitis, and NKT cells from Con A-challenged liver tissues of TCR δ−/− mice expressed significantly higher amounts of proinflammatory cytokine IFN-γ than those from Wt mice, indicating that γδ T cells protected hepatitis through targeting NKT cells. Finally, abnormal capacity of IFN-γ production by NKT cells of TCR δ−/− mice could only be downregulated by transferring Wt, but not IL-17−/−, Vγ4 γδ T cells, confirming an essential role of Vγ4-derived IL-17A in regulating the function of NKT cells. In summary, our report thus demonstrated a novel function of Vγ4 γδ T cells in mediating a protective effect against Con A-induced fulminant hepatitis through negatively regulating function of NKT cells in an IL-17A–dependent manner, and transferring Vγ4 γδ T cells may provide a novel therapeutic approach for this devastating liver disease.
Journal of Immunology | 2011
Jianlei Hao; Siyuan Dong; Siyuan Xia; Weifeng He; Hao Jia; Song Zhang; Jun Wei; Rebecca L. O’Brien; Willi K. Born; Zhenzhou Wu; Puyue Wang; Jihong Han; Zhangyong Hong; Liqing Zhao; Zhinan Yin
It has been demonstrated that the two main subsets of peripheral γδ T cells, Vγ1 and Vγ4, have divergent functions in many diseases models. Recently, we reported that Vγ4 γδ T cells played a protective role in tumor immunity through eomesodermin-controlled mechanisms. However, the precise roles of Vγ1 γδ T cells in tumor immunity, especially whether Vγ1 γδ T cells have any interaction with Vγ4 γδ T cells, remain unknown. We demonstrated in this paper that Vγ1 γδ T cells suppressed Vγ4 γδ T cell-mediated antitumor function both in vitro and in vivo, and this suppression was cell contact independent. Using neutralizing anti–IL-4 Ab or IL-4−/− mice, we determined the suppressive factor derived from Vγ1 γδ T cells was IL-4. Indeed, treatment of Vγ4 γδ T cells with rIL-4 significantly reduced expression levels of NKG2D, perforin, and IFN-γ. Finally, Vγ1 γδ T cells produced more IL-4 and expressed significantly higher level of GATA-3 upon Th2 priming in comparison with Vγ4 γδ T cells. Therefore, to our knowledge, our results established for the first time a negative regulatory role of Vγ1 γδ T cells in Vγ4 γδ T cell-mediated antitumor immunity through cell contact-independent and IL-4–mediated mechanisms. Selective depletion of this suppressive subset of γδ T cells may be beneficial for tumor immune therapy.
Arthritis & Rheumatism | 2012
Ti Wen; Yangguang Li; Meng Wu; Xiaolin Sun; Xiucong Bao; Yuquan Lin; Jianlei Hao; Lin Han; Guangchao Cao; Ziwen Wang; Yuxiu Liu; Zhenzhou Wu; Zhangyong Hong; Puyue Wang; Liqing Zhao; Zhanguo Li; Qingmin Wang; Zhinan Yin
OBJECTIVE To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. METHODS We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. RESULTS NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. CONCLUSION For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis.
International Journal of Pharmaceutics | 2014
Xiuqi Kong; Kui Yu; Min Yu; Yupeng Feng; Jin Wang; Mingjie Li; Zeming Chen; Minghao He; Rui Guo; Ruisong Tian; Yuxi Li; Wenjie Wu; Zhangyong Hong
With the aim of developing an efficient targeted delivery system for cancer therapy that overcomes drug leakage during circulation, we prepared a novel multifunctional dendrimeric carrier by integrating long hydrophobic C₁₂ alkyl chains, poly(ethylene glycol) chains and c(RGDfK) ligands presented on the surface. This dendrimer was able to tightly encapsulate the hydrophobic anticancer drug 10-hydroxycamptothecin (10-HCPT) through simple complexation and selectively target the drug to cancer cells overexpressing integrin αvβ₃ through high affinity interactions. The complex has a high loading efficiency, with each molecule encapsulating approximately 20 drug molecules; high stability, without any detectable drug release during dialysis for three days; and high water solubility, achieving an approximately 600-fold increase over the water solubility of free 10-HCPT. This complex exhibited notably high cytotoxicity against 22RV1 cells overexpressing integrin αvβ₃ and a far lower cytotoxicity against MCF-7 cells, which express low levels of integrin αvβ₃. We expected encapsulated 10-HCPT to regain its anti-cancer activity following selective internalization of the complex into carcinoma cells via integrin receptor mediated endocytosis. As the drug remains inactive before internalization, this carrier has the ability to overcome problems associated with drug leakage in the circulation and off-target effects on normal tissues.
Arthritis Research & Therapy | 2011
Jian Tao; Masahito Kamanaka; Jianlei Hao; Zhifang Hao; Xi Jiang; Joe Craft; Richard A. Flavell; Zhenzhou Wu; Zhangyong Hong; Liqing Zhao; Zhinan Yin
IntroductionIL-10 is a very important anti-inflammatory cytokine. However, the role of this cytokine in T cells in the pathogenesis of collagen-induced arthritis is unclear. The purpose of this study was to define the role of IL-10 signaling in T cells in the pathogenesis of collagen-induced arthritis.MethodsIL-10 receptor dominant-negative transgenic (Tg) and control mice were immunized with bovine type II collagen to induce arthritis. The severity of arthritis was monitored and examined histologically. T-cell activation and cytokine production were analyzed using flow cytometry. T-cell proliferation was examined by [3H]thymidine incorporation. Antigen-specific antibodies in serum were measured by ELISA. Foxp3 expression in CD4+ regulatory T cells (Tregs) was determined by intracellular staining or Foxp3-RFP reporter mice. The suppressive function of Foxp3+CD4+ Tregs was determined in vitro by performing a T-cell proliferation assay. The level of IL-17 mRNA in joints was measured by real-time PCR. A two-tailed nonparametric paired test (Wilcoxon signed-rank test) was used to calculate the arthritis and histological scores. Students paired or unpaired t-test was used for all other statistical analyses (InStat version 2.03 software; GraphPad Software, San Diego, CA, USA).ResultsBlocking IL-10 signaling in T cells rendered mice, especially female mice, highly susceptible to collagen-induced arthritis. T-cell activation and proliferation were enhanced and produced more IFN-γ. The suppressive function of CD4+Foxp3+ regulatory T cells was significantly impaired in Tg mice because of the reduced ability of Tregs from Tg mice to maintain their levels of Foxp3. This was further confirmed by transferring Foxp3-RFP cells from Tg or wild-type (Wt) mice into a congenic Wt host. The higher level of IL-17 mRNA was detected in inflammatory joints of Tg mice, probably due to the recruitment of IL-17+γδ T cells into the arthritic joints.ConclusionIL-10 signaling in T cells is critical for dampening the pathogenesis of collagen-induced arthritis by maintaining the function of Tregs and the recruitment of IL-17+γδ T cells.
Advanced Functional Materials | 2017
Zeming Chen; Fuyao Liu; Yanke Chen; Jun Liu; Xiaoying Wang; Ann T. Chen; Gang Deng; Hongyi Zhang; Jie Liu; Zhangyong Hong; Jiangbing Zhou
Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core-shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.
International Journal of Nanomedicine | 2015
Min Yu; Zeming Chen; Wenjun Guo; Jin Wang; Yupeng Feng; Xiuqi Kong; Zhangyong Hong
Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages.
International Immunopharmacology | 2014
Xi Chen; Yanbing Shen; Qikun Liang; Richard A. Flavell; Zhangyong Hong; Zhinan Yin; Min Wang
Bavachinin, which can be isolated from the Chinese herb Fructus Psoraleae, has the potential as a potent anti-asthma drug. However, the extremely low water solubility of Bavachinin limits its application. In this study, two new derivatives of Bavachinin, i.e., compounds A and B, whose water solubility is better than that of Bavachinin, were synthesized via biotransformation. A comparative investigation was then performed on the effects of these two new derivatives, along with Bavachinin, on T cell differentiation. The results showed that they have different effects. Bavachinin and compound B inhibited green fluorescent protein (GFP) production from the T cells of IL-4-GFP-enhanced transcript (4GET) mice, whereas compound A did not. The effect was mainly attributed to the inhibition of GATA-3 protein production. Bavachinin and compound B can inhibit the production of GATA-3 mRNA, but they showed different effects on the production of T-bet mRNA. Compound B increased the production of T-bet mRNA, whereas Bavachinin did not. The results will be very useful for optimizing Bavachinin so that potent anti-allergic drugs can be developed. The structure-activity relationship of Th2 was revealed based on the difference between Bavachinin and compound B. This finding can enrich the database of preliminary drug screening from their chemical structures.