Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengjia Wang is active.

Publication


Featured researches published by Zhengjia Wang.


Biologia Plantarum | 2012

A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis

B. Zhang; Zhengjia Wang; Song Heng Jin; Guohua Xia; You Jun Huang; Jianqin Huang

Apomixis represents an alteration of classical sexual plant reproduction to produce seeds that have essentially clonal embryos. In this report, hickory (Carya cathayensis Sarg.), which is an important oil tree, is identified as a new apomictic species. The ovary has a chamber containing one ovule that is unitegmic and orthotropous. Embryological investigations indicated that the developmental pattern of embryo sac formation is typical polygonum-type. Zygote embryos were not found during numerous histological investigations, and the embryo originated from nucellar cells. Nucellar embryo initials were found both at the micropylar and chalazal ends of the embryo sac, but the mature embryo developed only at the nucellar beak region. The mass of the nucellar embryo initial at the nucellar beak region developed into a nucellar embryo or split into two nucellar proembryos. The later development of the nucellar embryo was similar to the zygotic embryo and progressed from globular embryo to heart-shape embryo and to cotyledon embryo.


Functional & Integrative Genomics | 2015

Identification of microRNAs differentially expressed involved in male flower development

Zhengjia Wang; Jianqin Huang; Zhichao Sun; Bingsong Zheng

Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.


Functional & Integrative Genomics | 2017

Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg

Zhengjia Wang; Ruiming Huang; Zhichao Sun; Tong Zhang; Jianqin Huang

MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.


Plant Physiology and Biochemistry | 2015

Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg.

Youjun Huang; Qin Zhou; Jianqin Huang; Yan-Ru Zeng; Zhengjia Wang; Qixiang Zhang; Yi-Hang Zhu; Chen Shen; Bingsong Zheng

Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory.


Frontiers in Plant Science | 2018

The Sequenced Angiosperm Genomes and Genome Databases

Fei Chen; Wei Dong; Jiawei Zhang; Xinyue Guo; Junhao Chen; Zhengjia Wang; Zhenguo Lin; Haibao Tang; Liangsheng Zhang

Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.


Journal of Agricultural and Food Chemistry | 2017

Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis)

Ruimin Huang; Youjun Huang; Zhichao Sun; Jianqin Huang; Zhengjia Wang

Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.


Current Genomics | 2014

Development of SSR Markers in Hickory (Carya cathayensis Sarg.) and Their Transferability to Other Species of Carya.

Juan Li; Yanru Zeng; Dengfeng Shen; Guohua Xia; Yinzhi Huang; Youjun Huang; Jun Chang; Jianqin Huang; Zhengjia Wang

Hickory (Carya cathayensis Sarg.), an important nut-producing species in Southeastern China, has high economic value, but so far there has been no cultivar bred under species although it is mostly propagated by seeding and some elite individuals have been found. It has been found recently that this species has a certain rate of apomixis and poor knowledge of its genetic background has influenced development of a feasible breeding strategy. Here in this paper we first release SSR (Simple sequence repeat) markers developed in this species and their transferability to other three species of the same genus, Carya. A total of 311 pairs of SSR primers in hickory were developed based on sequenced cDNAs of a fruit development-associated cDNA library and RNA-seq data of developing female floral buds and could be used to distinguish hickory, C. hunanensis Cheng et R. H. Chang ex R. H. Chang et Lu, C. illinoensis K. Koch (pecan) and C. dabieshanensis M. C. Liu et Z. J. Li, but they were monomorphic in both hickory and C. hunanensis although multi-alleles have been identified in all the four species. There is a transferability rate of 63.02% observed between hickory and pecan and the markers can be applied to study genetic diversity of accessions in pecan. When used in C. dabieshanensis, it was revealed that C. dabieshanensis had the number of alleles per locus ranging from 2 to 4, observed heterozygosity from 0 to 0.6667 and expected heterozygosity from 0.333 to 0.8667, respectively, which supports the existence of C. dabieshanensis as a separate species different from hickory and indicates that there is potential for selection and breeding in this species.


Database | 2018

realDB: a genome and transcriptome resource for the red algae (phylum Rhodophyta)

Fei Chen; Jiawei Zhang; Junhao Chen; Xiaojiang Li; Wei Dong; Jian Hu; Meigui Lin; Yanhui Liu; Guowei Li; Zhengjia Wang; Liangsheng Zhang

Abstract With over 6000 species in seven classes, red algae (Rhodophyta) have diverse economic, ecological, experimental and evolutionary values. However, red algae are usually absent or rare in comparative analyses because genomic information of this phylum is often under-represented in various comprehensive genome databases. To improve the accessibility to the ome data and omics tools for red algae, we provided 10 genomes and 27 transcriptomes representing all seven classes of Rhodophyta. Three genomes and 18 transcriptomes were de novo assembled and annotated in this project. User-friendly BLAST suit, Jbrowse tools and search system were developed for online analyses. Detailed introductions to red algae taxonomy and the sequencing status are also provided. In conclusion, realDB (realDB.algaegenome.org) provides a platform covering the most genome and transcriptome data for red algae and a suite of tools for online analyses, and will attract both red algal biologists and those working on plant ecology, evolution and development. Database URL: http://realdb.algaegenome.org/


Physiology and Molecular Biology of Plants | 2017

Genome-wide comparative analysis of LEAFY promoter sequence in angiosperms

Zhichao Sun; Zheng Li; Jianqin Huang; Bingsong Zheng; Liangsheng Zhang; Zhengjia Wang

Regulation of the flowering mechanism is influenced by many environmental factors. Dissecting the regulatory processes upstream of the LFY (LEAFY) gene will help us to understand the molecular mechanisms of floral induction. In total, 53 LFY sequences were identified in 37 species. Among the 53 selected LFY promoters and after eliminating the short sequences, 47 LFY promoters were analyzed. Comparative genome studies for LFY promoters among plants showed that TATA-box existed in all herbaceous plants. The 1345-bp promoter sequence upstream to hickory LFY gene was cloned and analyzed, together with functional studies. The result of sequence alignment showed that the region of the hickory LFY promoter has only two conserved auxin response elements (AuxRE), whereas other plants had four. The positions of AuxRE in hickory and walnut were the same, but they were different from the positions from other plants. Furthermore the sequence analysis showed that the promoter have TATA-box and CAAT-box motifs. Deletion analysis of these motifs did not block β-glucuronidase (GUS) activity during the transient expression assay, suggesting that it may be a TATA-less promoter. Low temperature and light significantly induced the full-length promoter to increase about two folds of the GUS enzymatic activity, suggesting these environmental factors induced flowering in hickory.


Database | 2018

MGH: a genome hub for the medicinal plant maca (Lepidium meyenii)

Junhao Chen; Jiawei Zhang; Meigui Lin; Wei Dong; Xinyue Guo; Yang Dong; Zhengjia Wang; Liangsheng Zhang; Fei Chen

Abstract Maca (Lepidium meyenii), a Brassicaceae herb plant originated from Andean mountains, has attracted wide interests due to its unique health benefits in reproduction and fertility. Because of its adaptation to the 4000 m high-altitude harsh environment, maca is attracting more and more attention from both crop breeders and basic biologists. After our previous release of the maca genome sequence, there’s a growing need to store, query, analyze and integrate various maca resources efficiently. Here, we created Maca Genome Hub (MGH), a genomics and genetics database of maca. Currently, the MGH V1.0 harbors the genome sequence, predicted coding sequences and protein sequences, various annotations, markers and expression data. For the maca research community, we also provided the publications, researchers and related news. MGH is designed to enable users’ easy access to analyze, retrieve and visualize the genomic or genetic information through a series of online tools, including the Basic Local Alignment Search Tool, the JBrowse, the query system, the synteny tool and the data downloads. These integrated heterogeneous data, tools and interfaces in MGH allow efficient mining of the latest genomics and genetics data. We hope that MGH will accelerate the research and development in maca.

Collaboration


Dive into the Zhengjia Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liangsheng Zhang

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Chen

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Jiawei Zhang

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Junhao Chen

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge