Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianqin Huang is active.

Publication


Featured researches published by Jianqin Huang.


Biologia Plantarum | 2012

A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis

B. Zhang; Zhengjia Wang; Song Heng Jin; Guohua Xia; You Jun Huang; Jianqin Huang

Apomixis represents an alteration of classical sexual plant reproduction to produce seeds that have essentially clonal embryos. In this report, hickory (Carya cathayensis Sarg.), which is an important oil tree, is identified as a new apomictic species. The ovary has a chamber containing one ovule that is unitegmic and orthotropous. Embryological investigations indicated that the developmental pattern of embryo sac formation is typical polygonum-type. Zygote embryos were not found during numerous histological investigations, and the embryo originated from nucellar cells. Nucellar embryo initials were found both at the micropylar and chalazal ends of the embryo sac, but the mature embryo developed only at the nucellar beak region. The mass of the nucellar embryo initial at the nucellar beak region developed into a nucellar embryo or split into two nucellar proembryos. The later development of the nucellar embryo was similar to the zygotic embryo and progressed from globular embryo to heart-shape embryo and to cotyledon embryo.


Functional & Integrative Genomics | 2015

Identification of microRNAs differentially expressed involved in male flower development

Zhengjia Wang; Jianqin Huang; Zhichao Sun; Bingsong Zheng

Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.


Functional & Integrative Genomics | 2017

Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg

Zhengjia Wang; Ruiming Huang; Zhichao Sun; Tong Zhang; Jianqin Huang

MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.


Plant Physiology and Biochemistry | 2015

Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg.

Youjun Huang; Qin Zhou; Jianqin Huang; Yan-Ru Zeng; Zhengjia Wang; Qixiang Zhang; Yi-Hang Zhu; Chen Shen; Bingsong Zheng

Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory.


Journal of Agricultural and Food Chemistry | 2017

Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis)

Ruimin Huang; Youjun Huang; Zhichao Sun; Jianqin Huang; Zhengjia Wang

Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.


Current Genomics | 2014

Development of SSR Markers in Hickory (Carya cathayensis Sarg.) and Their Transferability to Other Species of Carya.

Juan Li; Yanru Zeng; Dengfeng Shen; Guohua Xia; Yinzhi Huang; Youjun Huang; Jun Chang; Jianqin Huang; Zhengjia Wang

Hickory (Carya cathayensis Sarg.), an important nut-producing species in Southeastern China, has high economic value, but so far there has been no cultivar bred under species although it is mostly propagated by seeding and some elite individuals have been found. It has been found recently that this species has a certain rate of apomixis and poor knowledge of its genetic background has influenced development of a feasible breeding strategy. Here in this paper we first release SSR (Simple sequence repeat) markers developed in this species and their transferability to other three species of the same genus, Carya. A total of 311 pairs of SSR primers in hickory were developed based on sequenced cDNAs of a fruit development-associated cDNA library and RNA-seq data of developing female floral buds and could be used to distinguish hickory, C. hunanensis Cheng et R. H. Chang ex R. H. Chang et Lu, C. illinoensis K. Koch (pecan) and C. dabieshanensis M. C. Liu et Z. J. Li, but they were monomorphic in both hickory and C. hunanensis although multi-alleles have been identified in all the four species. There is a transferability rate of 63.02% observed between hickory and pecan and the markers can be applied to study genetic diversity of accessions in pecan. When used in C. dabieshanensis, it was revealed that C. dabieshanensis had the number of alleles per locus ranging from 2 to 4, observed heterozygosity from 0 to 0.6667 and expected heterozygosity from 0.333 to 0.8667, respectively, which supports the existence of C. dabieshanensis as a separate species different from hickory and indicates that there is potential for selection and breeding in this species.


Plant Cell Reports | 2017

In vitro gene expression and mRNA translocation from transformed walnut (Juglans regia) rootstocks expressing DsRED fluorescent protein to wild-type scions

Xiaochen Liu; Sriema L. Walawage; Charles A. Leslie; Abhaya M. Dandekar; David Tricoli; Hengkang Hu; Youjun Huang; Jiaqi Zhang; Chuanmei Xv; Jianqin Huang; Qixiang Zhang

Key messageAn in vitro grafting method was developed for examining gene translocation from rootstock to scion in walnut. Results showed theDsREDgene itself was not translocated but expressed mRNA was.AbstractGrafting is widely used in plants, especially in fruit and nut crops. Selected rootstocks can control scion growth and physiological traits, including shortening of the juvenile phase and controlling tree size. Rootstocks also can provide improved soil adaptation and pathogen resistance. Development of genetically modified (GM) fruit crops has progressed recently, but commercial cultivation is still limited due to the time required for evaluation and issues with deregulation. In this study, we evaluated the stability of DsRED marker gene expression in in vitro walnut shoots and examined translocation of the gene and its mRNA from transformed rootstock to wild-type scion. Results show that DsRED was expressed uniformly in transformed tissue-cultured shoots. When used as in vitro rootstocks, these had good graft affinity with wild-type control scion. PCR and qRT-PCR analysis showed that the DsRED gene was not transported from rootstock to scion, but the transcribed mRNA was translocated. This result provides further evidence of gene signal transport from rootstock to scion in fruit and nut crops.


Physiology and Molecular Biology of Plants | 2017

Genome-wide comparative analysis of LEAFY promoter sequence in angiosperms

Zhichao Sun; Zheng Li; Jianqin Huang; Bingsong Zheng; Liangsheng Zhang; Zhengjia Wang

Regulation of the flowering mechanism is influenced by many environmental factors. Dissecting the regulatory processes upstream of the LFY (LEAFY) gene will help us to understand the molecular mechanisms of floral induction. In total, 53 LFY sequences were identified in 37 species. Among the 53 selected LFY promoters and after eliminating the short sequences, 47 LFY promoters were analyzed. Comparative genome studies for LFY promoters among plants showed that TATA-box existed in all herbaceous plants. The 1345-bp promoter sequence upstream to hickory LFY gene was cloned and analyzed, together with functional studies. The result of sequence alignment showed that the region of the hickory LFY promoter has only two conserved auxin response elements (AuxRE), whereas other plants had four. The positions of AuxRE in hickory and walnut were the same, but they were different from the positions from other plants. Furthermore the sequence analysis showed that the promoter have TATA-box and CAAT-box motifs. Deletion analysis of these motifs did not block β-glucuronidase (GUS) activity during the transient expression assay, suggesting that it may be a TATA-less promoter. Low temperature and light significantly induced the full-length promoter to increase about two folds of the GUS enzymatic activity, suggesting these environmental factors induced flowering in hickory.


Plant Physiology and Biochemistry | 2015

SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.

Jingjing Wang; Chuanming Hou; Jianqin Huang; Zhengjia Wang; Yingwu Xu

To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development.


BMC Genomics | 2013

Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.)

Youjun Huang; Li-Li Liu; Jianqin Huang; Zhengjia Wang; Fang-Fang Chen; Qixiang Zhang; Bingsong Zheng; Ming Chen

Collaboration


Dive into the Jianqin Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge