Zhengping Zhou
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhengping Zhou.
ACS Applied Materials & Interfaces | 2012
Xuezhu Xu; Long Jiang; Zhengping Zhou; Xiang-Fa Wu; Yechun Wang
Soy protein isolate (SPI) and polyethylene oxide (PEO) were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and nonwoven nanofiber membranes were prepared from the solution by electrospinning. PEO functioned as a cospinning polymer in the process to improve the spinnability of SPI. The ratio of SPI to PEO was varied and the rest spinning conditions remained unchanged. The morphology of the nanofiber membranes, SPI and PEO distribution and phase structure in the fiber, crystallization and interaction between SPI and PEO, thermal properties and wettability of the membranes were studied. The results showed that the diameter of most of the nanofibers was in the range of 200-300 nm. SPI and PEO showed high compatibility in the fiber and SPI was homogeneously dispersed at nanoscale. Crystallization of SPI and PEO in the fiber was significantly different from that of their pure forms. All the nanofiber membranes showed superhydrophilicity. These nanofiber membranes can find importance in filtration and biomedical applications.
Nanoscale | 2012
Prakash Joshi; Zhengping Zhou; Prashant Poudel; Amit Thapa; Xiang-Fa Wu; Qiquan Qiao
A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (R(ct)) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm(2), much lower than that of the Pt electrode (1.81 Ω cm(2)). Such a low value of R(ct) indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (R(s)) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm(2), which was close to the R(s) of 5.77 Ω cm(2) of the Pt electrode, despite the significant difference in their thicknesses: ∼22 μm for Ni-CNT-CNF composite, while ∼40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (R(s-tot)) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (J(sc)) of 15.83 mA cm(-2), open circuit voltage (V(oc)) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with J(sc) of 15.01 mA cm(-2), V(oc) of 0.83, and FF of 0.67.
RSC Advances | 2014
Zhengping Zhou; Xiang-Fa Wu; Haoqing Hou
This paper reports the synthesis and electrochemical performance of carbon nanofibers (CNFs) surface-grown with carbon nanotubes (CNTs) and nanostructured polyaniline (PANI) films, i.e., PANI/CNT/CNF, for use as a high-performance electrode material of pseudosupercapacitors. The PANI/CNT/CNF films were synthesized via in situ polymerization of aniline onto the surface of CNT-coated CNFs. The CNT-coated CNFs were prepared via electrospinning continuous polyacrylonitrile (PAN) nanofibers, followed by controlled carbonization and CNT growth. The morphology and microstructure of the PANI/CNT/CNF were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The electrochemical properties of the novel nanofiber films were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) in a 1 M aqueous H2SO4 solution as electrolyte. This unique porous nanofibrous structure exhibited low equivalent series resistance (ESR) and interfacial charge-transfer resistance (Rct) of 1.46 Ω and 0.55 Ω, respectively. Supercapacitors based on the present PANI/CNT/CNF electrodes behaved as with high specific capacitance of ∼503 F g−1 at a current density of 0.3 A g−1 and ∼471 F g−1 (only 6% decrease) at 3 A g−1. The maximum energy and power densities of ∼70 W h kg−1 and ∼15 kW kg−1 were achieved. In addition, over 92% of the initial capacitance was retained after 1000 charge/discharge cycles at a current density of 15 A g−1. The results of the present experimental study suggested that such a unique multifunctional nanofibrous material can be utilized for developing high-performance electrochemical energy storage devices such as pseudosupercapacitors, battery–supercapacitor hybrids, etc.
Applied Physics Letters | 2012
Zhengping Zhou; Xiang-Fa Wu; Hao Fong
This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.
AIP Advances | 2015
Jiawei Gong; Hui Qiao; Sudhan Sigdel; Hytham Elbohy; Nirmal Adhikari; Zhengping Zhou; K. Sumathy; Qufu Wei; Qiquan Qiao
SnO2 nanofibers and their composites based photoanodes were fabricated and investigated in the application of dye-sensitized solar cells. The photoanode made of SnO2/TiO2 composites yielded an over 2-fold improvement in overall conversion efficiency. The microstructure of SnO2 nanofibers was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). A compact morphology of composites was observed using scanning electron microscopy (SEM). A long charge diffusion length (62.42 μm) in the composites was derived from time constant in transient photovoltage and photocurrent analysis. These experimental results demonstrate that one-dimensional nanostructured SnO2/TiO2 composites have a great potential for application in solar cells.
Journal of Applied Physics | 2016
Jiawei Gong; Zhengping Zhou; K. Sumathy; Huojun Yang; Qiquan Qiao
Activated graphene nanoplatelets (aGNPs) prepared by a hydrothermal method using KOH as activating agent were used as counter electrode for high efficiency dye-sensitized solar cells (DSSCs). After the KOH activation, the scanning electron microscopy image shows that aGNPs demonstrate a more curled, rough, and porous morphology which could contain both micro- and mesopores. The KOH activation changed the stacked layers of GNPs to a more crumpled and curved morphology. The microstructure of large pores significantly increased the electrode surface area and roughness, leading to the high electrocatalytic activity for triiodide reduction at the counter electrode. The DSSCs fabricated using aGNP as counter electrodes were tested under standard AM 1.5 illumination with an intensity of 91.5 mW/cm2. The device achieved an overall power conversion efficiency of 7.7%, which is comparable to the conventional platinum counter electrode (8%). Therefore, the low cost and high performance aGNP based counter electrode i...
Applied Physics Letters | 2012
Xiang-Fa Wu; Zhengping Zhou; Wang-Min Zhou
Electrical contact resistance (ECR) influences the electrochemical performance of porous electrodes made of stacked discrete materials (e.g., carbon nanotubes, nanofibers, etc.) for use in supercapacitors and rechargeable batteries. This study establishes a simple elasticity-conductivity model for the ECR of filaments in adhesive contact. The elastic deformation and size of electrical contact zone of the filaments are determined by using an adhesive contact model of filaments, and the ECR of adhesive filaments is obtained in explicit form. Dependencies of the ECR upon the filament geometries, surface energy, and elasticity are examined.
Journal of Physics D | 2011
Zhengping Zhou; Xiang-Fa Wu; Xueqin Gao; Long Jiang; Yong Zhao; Hao Fong
This paper reports the dependence of conic angle of nanofibres on the processing and material parameters during electrospinning. Solutions of polyacrylonitrile (PAN) in dimethylformamide (DMF) with varied PAN concentrations were studied as the model systems, and they were electrospun into nanofibres at different high direct current (dc) voltages, flow rates and needle diameters. The dynamic and transient shear viscosities of the PAN/DMF solutions were characterized by a parallel-plate rheometer at varied shear rates. Rheological measurements showed that the PAN/DMF solutions behaved as Newtonian fluids at relatively low to medium shear rates, while the solutions with high PAN concentrations of 18 and 20 wt% exhibited a significant shear-thinning behaviour at high shear rates, especially in the case of transient shear mode. Experimental results indicated that at the electrostatic field of ∼80 kV m −1 and needle inner diameter of 0.48 mm (22 gauge), the conic angle of the nanofibre envelope decreased from ∼160 ◦ to ∼75 ◦ with an increase in PAN concentration from 12 to 20 wt%; at the PAN concentration of 16 wt%, the conic angle increased nonlinearly from ∼40 ◦ to ∼160 ◦ with an increase in electric field from 50 to 140 kV m −1 . In addition, experimental results showed that the needle inner diameter also noticeably influenced the conic angle. This study provided the experimental evidence useful for understanding the scaling properties of electrohydrodynamic jet motion for controllable electrospinning and process modelling. (Some figures in this article are in colour only in the electronic version)
Scientific Reports | 2017
Zhengping Zhou; Hua Zhang; Yan Zhou; Hui Qiao; Ashim Gurung; Roya Naderi; Hytham Elbohy; Alevtina Smirnova; Huitian Lu; Shuiliang Chen; Qiquan Qiao
A hierarchical mesoporous carbon foam (ECF) with an interconnected micro-/mesoporous architecture was prepared and used as a binder-free, low-cost, high-performance anode for lithium ion batteries. Due to its high specific surface area (980.6 m2/g), high porosity (99.6%), light weight (5 mg/cm3) and narrow pore size distribution (~2 to 5 nm), the ECF anode exhibited a high reversible specific capacity of 455 mAh/g. Experimental results also demonstrated that the anode thickness significantly influence the specific capacity of the battery. Meanwhile, the ECF anode retained a high rate performance and an excellent cycling performance approaching 100% of its initial capacity over 300 cycles at 0.1 A/g. In addition, no binders, carbon additives or current collectors are added to the ECF based cells that will increase the total weight of devices. The high electrochemical performance was mainly attributed to the combined favorable hierarchical structures which can facilitate the Li+ accessibility and also enable the fast diffusion of electron into the electrode during the charge and discharge process. The synthesis process used to make this elastic carbon foam is readily scalable to industrial applications in energy storage devices such as li-ion battery and supercapacitor.
Cogent engineering | 2017
Jiawei Gong; K. Sumathy; Zhengping Zhou; Qiquan Qiao
Abstract A simple, first-principles mathematical model has been developed to analyze the effect of interfacial and bulk charge transfer on the power output characteristics of dye-sensitized solar cells (DSSCs). Under steady state operating conditions, the Butler-Volmer equation and Schottky barrier model were applied to evaluate the voltage loss at counter electrode/electrolyte and TiO2/TCO interfaces, respectively. Experimental data acquired from typical DSSCs tested in our laboratory have been used to validate the theoretical J–V characteristics predicted by the present model. Compared to the conventional diffusion model, the present model fitted the experimental J–V curve more accurately at high voltages (0.65–0.8 V). Parametric studies were conducted to analyze the effect of series resistance, shunt resistance, interfacial overpotential, as well as difference between the conduction band and formal redox potentials on DSSCs’ performance. Simulated results show that a “lower-limit” of shunt resistance (103 Ωcm2) is necessary to guarantee a maximized efficiency. The model predicts a linear relationship between open circuit voltage (Voc) and photoanode temperature (T) with a slope of −1 mV/°C, which is close to the experimental data reported in literature. Additionally, it is observed that a small value of overpotential (2.2 mV) occurs at the short-circuit condition (Jsc = 10.5 mA/cm2), which is in a close agreement with Volmer-Butler equation. This observation suggests that, compared to the maximum attainable voltage (700 mV), the overpotential values are small and can be neglected for platinum catalyst based DSSCs.