Zhengyu Ouyang
Ragon Institute of MGH, MIT and Harvard
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhengyu Ouyang.
Nature Medicine | 2014
Maria J. Buzon; Hong Sun; Chun Li; Amy Shaw; Katherine Seiss; Zhengyu Ouyang; Enrique Martin-Gayo; Jin Leng; Timothy J. Henrich; Jonathan Z. Li; Florencia Pereyra; Ryan Zurakowski; Bruce D. Walker; Eric S. Rosenberg; Xu G. Yu; Mathias Lichterfeld
Cellular HIV-1 reservoirs that persist despite antiretroviral treatment are incompletely defined. We show that during suppressive antiretroviral therapy, CD4+ T memory stem cells (TSCM cells) harbor high per-cell levels of HIV-1 DNA and make increasing contributions to the total viral CD4+ T cell reservoir over time. Moreover, we conducted phylogenetic studies that suggested long-term persistence of viral quasispecies in CD4+ TSCM cells. Thus, HIV-1 may exploit the stem cell characteristics of cellular immune memory to promote long-term viral persistence.
Journal of Virology | 2014
Maria J. Buzon; Enrique Martin-Gayo; Florencia Pereyra; Zhengyu Ouyang; Hong Sun; Jonathan Z. Li; Michael J. Piovoso; Amy Shaw; Judith Dalmau; Nadine Zangger; Javier Martinez-Picado; Ryan Zurakowski; Xu G. Yu; Amalio Telenti; Bruce D. Walker; Eric S. Rosenberg; Mathias Lichterfeld
ABSTRACT Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.
Journal of Virology | 2015
Selena Vigano; Thomas A. Rasmussen; Ole S. Søgaard; Zhengyu Ouyang; Maria J. Buzon; Arman Bashirova; Mary Carrington; Sarah Palmer; Christel R. Brinkmann; Xu G. Yu; Lars Østergaard; Martin Tolstrup; Mathias Lichterfeld
ABSTRACT The pharmaceutical reactivation of dormant HIV-1 proviruses by histone deacetylase inhibitors (HDACi) represents a possible strategy to reduce the reservoir of HIV-1-infected cells in individuals treated with suppressive combination antiretroviral therapy (cART). However, the effects of such latency-reversing agents on the viral reservoir size are likely to be influenced by host immune responses. Here, we analyzed the immune factors associated with changes in proviral HIV-1 DNA levels during treatment with the potent HDACi panobinostat in a human clinical trial involving 15 cART-treated HIV-1-infected patients. We observed that the magnitude, breadth, and cytokine secretion profile of HIV-1-specific CD8 T cell responses were unrelated to changes in HIV-1 DNA levels in CD4 T cells during panobinostat treatment. In contrast, the proportions of CD3− CD56+ total NK cells and CD16+ CD56dim NK cells were inversely correlated with HIV-1 DNA levels throughout the study, and changes in HIV-1 DNA levels during panobinostat treatment were negatively associated with the corresponding changes in CD69+ NK cells. Decreasing levels of HIV-1 DNA during latency-reversing treatment were also related to the proportions of plasmacytoid dendritic cells, to distinct expression patterns of interferon-stimulated genes, and to the expression of the IL28B CC genotype. Together, these data suggest that innate immune activity can critically modulate the effects of latency-reversing agents on the viral reservoir and may represent a target for future immunotherapeutic interventions in HIV-1 eradication studies. IMPORTANCE Currently available antiretroviral drugs are highly effective in suppressing HIV-1 replication, but the virus persists, despite treatment, in a latent form that does not actively express HIV-1 gene products. One approach to eliminate these cells, colloquially termed the “shock-and-kill” strategy, focuses on the use of latency-reversing agents that induce active viral gene expression in latently infected cells, followed by immune-mediated killing. Panobinostat, a histone deacetylase inhibitor, demonstrated potent activities in reversing HIV-1 latency in a recent pilot clinical trial and reduced HIV-1 DNA levels in a subset of patients. Interestingly, we found that innate immune factors, such as natural killer cells, plasmacytoid dendritic cells, and the expression patterns of interferon-stimulated genes, were most closely linked to a decline in the HIV-1 DNA level during treatment with panobinostat. These data suggest that innate immune activity may play an important role in reducing the residual reservoir of HIV-1-infected cells.
PLOS Pathogens | 2015
Enrique Martin-Gayo; Maria J. Buzon; Zhengyu Ouyang; Taylor Hickman; Jacqueline Cronin; Dina Pimenova; Bruce D. Walker; Mathias Lichterfeld; Xu G. Yu
The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes.
Journal of Clinical Investigation | 2017
Guinevere Q. Lee; Nina Orlova-Fink; Kevin Einkauf; Fatema Z. Chowdhury; Xiaoming Sun; Sean Harrington; Hsiao-Hsuan Kuo; Stephane Hua; Hsiao-Rong Chen; Zhengyu Ouyang; Kavidha Reddy; Krista Dong; Thumbi Ndung’u; Bruce D. Walker; Eric S. Rosenberg; Xu G. Yu; Mathias Lichterfeld
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.
Journal of Virology | 2015
Hong Sun; Dhohyung Kim; Xiaodong Li; Maja Kiselinova; Zhengyu Ouyang; Linos Vandekerckhove; Hong Shang; Eric S. Rosenberg; Xu G. Yu; Mathias Lichterfeld
ABSTRACT The ability to persist long term in latently infected CD4 T cells represents a characteristic feature of HIV-1 infection and the predominant barrier to efforts aiming at viral eradication and cure. Yet, increasing evidence suggests that only small subsets of CD4 T cells with specific developmental and maturational profiles are able to effectively support HIV-1 long-term persistence. Here, we analyzed how the functional polarization of CD4 T cells shapes and structures the reservoirs of HIV-1-infected cells. We found that CD4 T cells enriched for a Th1/17 polarization had elevated susceptibilities to HIV-1 infection in ex vivo assays, harbored high levels of HIV-1 DNA in persons treated with antiretroviral therapy, and made a disproportionately increased contribution to the viral reservoir relative to their contribution to the CD4 T memory cell pool. Moreover, HIV-1 DNA levels in Th1/17 cells remained stable over many years of antiretroviral therapy, resulting in a progressively increasing contribution of these cells to the viral reservoir, and phylogenetic studies suggested preferential long-term persistence of identical viral sequences during prolonged antiretroviral treatment in this cell compartment. Together, these data suggest that Th1/17 CD4 T cells represent a preferred site for HIV-1 DNA long-term persistence in patients receiving antiretroviral therapy. IMPORTANCE Current antiretroviral therapy is very effective in suppressing active HIV-1 replication but does not fully eliminate virally infected cells. The ability of HIV-1 to persist long term despite suppressive antiretroviral combination therapy represents a perplexing aspect of HIV-1 disease pathogenesis, since most HIV-1 target cells are activated, short-lived CD4 T cells. This study suggests that CD4 T helper cells with Th1/17 polarization have a preferential role as a long-term reservoir for HIV-1 infection during antiretroviral therapy, possibly because these cells may imitate some of the functional properties traditionally attributed to stem cells, such as the ability to persist for extremely long periods of time and to repopulate their own pool size through homeostatic self-renewal. These observations support the hypothesis that HIV-1 persistence is driven by small subsets of long-lasting stem cell-like CD4 T cells that may represent particularly promising targets for clinical strategies aiming at HIV-1 eradication and cure.
Journal of Virology | 2015
Selena Vigano; Jordi Negron; Zhengyu Ouyang; Eric S. Rosenberg; Bruce D. Walker; Mathias Lichterfeld; Xu G. Yu
ABSTRACT HIV-1-specific CD8 T cells can influence HIV-1 disease progression during untreated HIV-1 infection, but the functional and phenotypic properties of HIV-1-specific CD8 T cells in individuals treated with suppressive antiretroviral therapy remain less well understood. Here we show that a subgroup of HIV-1-specific CD8 T cells with stem cell-like properties, termed T memory stem cells (TSCM cells), is enriched in patients receiving suppressive antiretroviral therapy compared with their levels in untreated progressors or controllers. In addition, a prolonged duration of antiretroviral therapy was associated with a progressive increase in the relative proportions of these stem cell-like HIV-1-specific CD8 T cells. Interestingly, the proportions of HIV-1-specific CD8 TSCM cells and total HIV-1-specific CD8 TSCM cells were associated with the CD4 T cell counts during treatment with antiretroviral therapy but not with CD4 T cell counts, viral loads, or immune activation parameters in untreated patients, including controllers. HIV-1-specific CD8 TSCM cells had increased abilities to secrete interleukin-2 in response to viral antigen, while secretion of gamma interferon (IFN-γ) was more limited in comparison to alternative HIV-1-specific CD8 T cell subsets; however, only proportions of IFN-γ-secreting HIV-1-specific CD8 TSCM cells were associated with CD4 T cell counts during antiretroviral therapy. Together, these data suggest that HIV-1-specific CD8 TSCM cells represent a long-lasting component of the cellular immune response to HIV-1 that persists in an antigen-independent fashion during antiretroviral therapy but seems unable to survive and expand under conditions of ongoing viral replication during untreated infection. IMPORTANCE Memory CD8 T cells that imitate the functional properties of stem cells to maintain lifelong cellular immunity have been hypothesized for many years, but only recently have such cells, termed T memory stem cells (TSCM cells), been physically identified and isolated in humans, mice, and nonhuman primates. Here, we investigated whether cellular immune responses against HIV-1 include such T memory stem cells. Our data show that HIV-1-specific CD8 T memory stem cells are detectable during all stages of HIV-1 infection but occur most visibly at times of prolonged viral antigen suppression by antiretroviral combination therapy. These cells may therefore be particularly relevant for designing antiviral immune defense strategies against the residual reservoir of HIV-1-infected cells that persists despite treatment and leads to viral rebound upon treatment discontinuation.
JCI insight | 2017
Enrique Martin-Gayo; Jacqueline Cronin; Taylor Hickman; Zhengyu Ouyang; Madelene Lindqvist; Kellie E. Kolb; Julian Schulze zur Wiesch; Rafael Cubas; Filippos Porichis; Alex K. Shalek; Jan van Lunzen; Elias K. Haddad; Bruce D. Walker; Daniel E. Kaufmann; Mathias Lichterfeld; Xu G. Yu
HIV-1-specific broadly neutralizing antibodies (bnAbs) typically develop in individuals with continuous high-level viral replication and increased immune activation, conditions that cannot be reproduced during prophylactic immunization. Understanding mechanisms supporting bnAb development in the absence of high-level viremia may be important for designing bnAb-inducing immunogens. Here, we show that the breadth of neutralizing antibody responses in HIV-1 controllers was associated with a relative enrichment of circulating CXCR5+CXCR3+PD-1lo CD4+ T cells. These CXCR3+PD-1lo Tfh-like cells were preferentially induced in vitro by functionally superior dendritic cells from controller neutralizers, and able to secrete IL-21 and support B cells. In addition, these CXCR3+PD-1lo Tfh-like cells contained higher proportions of stem cell-like memory T cells, and upon antigenic stimulation differentiated into PD-1hi Tfh-like cells in a Notch-dependent manner. Together, these data suggest that CXCR5+CXCR3+PD-1lo cells represent a dendritic cell-primed precursor cell population for PD-1hi Tfh-like cells that may contribute to the generation of bnAbs in the absence of high-level viremia.
Journal of Acquired Immune Deficiency Syndromes | 2014
Maria J. Buzon; Yue Yang; Zhengyu Ouyang; Hong Sun; Katherine Seiss; Jerome Rogich; Sylvie Le Gall; Florencia Pereyra; Eric S. Rosenberg; Xu G. Yu; Mathias Lichterfeld
Background:HIV-1 establishes a lifelong infection in the human body, but host factors that influence viral persistence remain poorly understood. Cell-intrinsic characteristics of CD4 T cells, the main target cells for HIV-1, may affect the composition of the latent viral reservoir by altering the susceptibility to CD8 T-cell–mediated killing. Results:We observed that susceptibilities of CD4 T cells to CD8 T-cell–mediated killing, as determined in direct ex vivo assays, were significantly higher in persons with natural control of HIV-1 (elite controllers) than in individuals effectively treated with antiretroviral therapy. These differences were most pronounced in naive and in terminally differentiated CD4 T cells and corresponded to a reduced viral reservoir size in elite controllers. Interestingly, the highest susceptibility to CD8 T-cell–mediated killing and lowest reservoirs of cell-associated HIV-1 DNA was consistently observed in elite controllers expressing the protective HLA class I allele B57. Conclusions:These data suggest that the functional responsiveness of host CD4 T cells to cytotoxic effects of HIV-1–specific CD8 T cells can contribute to shaping the structure and composition of the latently infected CD4 T-cell pool.
Immunity | 2018
Hsiao-Hsuan Kuo; Rushdy Ahmad; Guinevere Q. Lee; Ce Gao; Hsiao-Rong Chen; Zhengyu Ouyang; Matthew J. Szucs; Dhohyung Kim; Athe M. N. Tsibris; Tae-Wook Chun; Emilie Battivelli; Eric Verdin; Eric S. Rosenberg; Steven A. Carr; Xu G. Yu; Mathias Lichterfeld
&NA; HIV‐1 infection of CD4+ T cells leads to cytopathic effects and cell demise, which is counter to the observation that certain HIV‐1‐infected cells possess a remarkable long‐term stability and can persist lifelong in infected individuals treated with suppressive antiretroviral therapy (ART). Using quantitative mass spectrometry‐based proteomics, we showed that HIV‐1 infection activated cellular survival programs that were governed by BIRC5, a molecular inhibitor of cell apoptosis that is frequently overexpressed in malignant cells. BIRC5 and its upstream regulator OX40 were upregulated in productively and latently infected CD4+ T cells and were functionally involved in maintaining their viability. Moreover, OX40‐expressing CD4+ T cells from ART‐treated patients were enriched for clonally expanded HIV‐1 sequences, and pharmacological inhibition of BIRC5 resulted in a selective decrease of HIV‐1‐infected cells in vitro. Together, these findings suggest that BIRC5 supports long‐term survival of HIV‐1‐infected cells and may lead to clinical strategies to reduce persisting viral reservoirs. Graphical Abstract Figure. No caption available. HighlightsHIV‐1‐infected CD4+ T cells activate cellular survival programsCD4+ T cells upregulate BIRC5 and OX40 during latent and productive HIV‐1 infectionOX40+CD4+ T cells from ART‐treated patients are enriched for clonal HIV‐1 sequencesInhibition of BIRC5 reduces the frequency of CD4+ T cells encoding for intact HIV‐1 &NA; The host factors that promote the survival and persistence of HIV‐infected CD4+ T cells are not clear. Kuo et al. demonstrate that the anti‐apoptotic protein BIRC5 and its upstream regulator OX40 can promote survival of HIV‐1‐infected reservoir CD4+ T cells, specifically during clonal proliferation. These findings point to clinical strategies that may reduce persisting viral reservoirs.