Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenying Nie is active.

Publication


Featured researches published by Zhenying Nie.


Diabetes | 2006

Loss of resistin improves glucose homeostasis in leptin deficiency.

Yong Qi; Zhenying Nie; Yun Sik Lee; Neel S. Singhal; Philipp E. Scherer; Mitchell A. Lazar; Rexford S. Ahima

Resistin levels are increased in obesity, and hyperresistinemia impairs glucose homeostasis in rodents. Here, we have determined the role of resistin in ob/ob mice that are obese and insulin resistant because of genetic deficiency of leptin. Loss of resistin increased obesity in ob/ob mice by further lowering the metabolic rate without affecting food intake. Nevertheless, resistin deficiency improved glucose tolerance and insulin sensitivity in these severely obese mice, largely by enhancing insulin-mediated glucose disposal in muscle and adipose tissue. In contrast, in C57BL/6J mice with diet-induced obesity but wild-type leptin alleles, resistin deficiency reduced hepatic glucose production and increased peripheral glucose uptake. Resistin deficiency enhanced Akt phosphorylation in muscle and liver and decreased suppressor of cytokine signaling-3 level in muscle, and these changes were reversed by resistin replacement. Together, these results provide strong support for an important role of resistin in insulin resistance and diabetes associated with genetic or diet-induced obesity.


Journal of Clinical Investigation | 2005

Neuronal eotaxin and the effects of ccr3 antagonist on airway hyperreactivity and M2 receptor dysfunction

A.D. Fryer; Louis H. Stein; Zhenying Nie; Damian E. Curtis; Christopher M. Evans; Simon Teanby Hodgson; Peter J. Jose; Kristen E. Belmonte; Erin Fitch; David B. Jacoby

Eosinophils cluster around airway nerves in patients with fatal asthma and in antigen-challenged animals. Activated eosinophils release major basic protein, which blocks inhibitory M2 muscarinic receptors (M2Rs) on nerves, increasing acetylcholine release and potentiating vagally mediated bronchoconstriction. We tested whether GW701897B, an antagonist of CCR3 (the receptor for eotaxin as well as a group of eosinophil active chemokines), affected vagal reactivity and M2R function in ovalbumin-challenged guinea pigs. Sensitized animals were treated with the CCR3 antagonist before inhaling ovalbumin. Antigen-challenged animals were hyperresponsive to vagal stimulation, but those that received the CCR3 antagonist were not. M2R function was lost in antigen-challenged animals, but not in those that received the CCR3 antagonist. Although the CCR3 antagonist did not decrease the number of eosinophils in lung tissues as assessed histologically, CCR3 antagonist prevented antigen-induced clustering of eosinophils along the nerves. Immunostaining revealed eotaxin in airway nerves and in cultured airway parasympathetic neurons from both guinea pigs and humans. Both IL-4 and IL-13 increased expression of eotaxin in cultured airway parasympathetic neurons as well as in human neuroblastoma cells. Thus, signaling via CCR3 mediates eosinophil recruitment to airway nerves and may be a prerequisite to blockade of inhibitory M2Rs by eosinophil major basic protein.


British Journal of Pharmacology | 2009

Etanercept prevents airway hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs

Zhenying Nie; David B. Jacoby; A.D. Fryer

Background and purpose:  Increased tumour necrosis factor‐α (TNF‐α) is associated with airway hyperreactivity in antigen‐challenged animals. In human asthmatics, TNF‐α is increased and blocking it prevents airway hyperreactivity in some asthmatic patients. However, the mechanisms by which TNF‐α mediates hyperreactivity are unknown. Airway hyperreactivity can be caused by dysfunction of neuronal M2 muscarinic receptors that normally limit acetylcholine release from parasympathetic nerves. Here we test whether blocking TNF‐α receptors with etanercept prevents M2 receptor dysfunction and airway hyperreactivity in antigen‐challenged guinea pigs.


American Journal of Respiratory Cell and Molecular Biology | 2014

Hyperinsulinemia Potentiates Airway Responsiveness to Parasympathetic Nerve Stimulation in Obese Rats

Zhenying Nie; David B. Jacoby; A.D. Fryer

Obesity is a substantial risk factor for developing asthma, but the molecular mechanisms underlying this relationship are unclear. We tested the role of insulin in airway responsiveness to nerve stimulation using rats genetically prone or resistant to diet-induced obesity. Airway response to vagus nerve stimulation and airway M2 and M3 muscarinic receptor function were measured in obese-prone and -resistant rats with high or low circulating insulin. The effects of insulin on nerve-mediated human airway smooth muscle contraction and human M2 muscarinic receptor function were tested in vitro. Our data show that increased vagally mediated bronchoconstriction in obesity is associated with hyperinsulinemia and loss of inhibitory M2 muscarinic receptor function on parasympathetic nerves. Obesity did not induce airway inflammation or increase airway wall thickness. Smooth muscle contraction to acetylcholine was not increased, indicating that hyperresponsiveness is mediated at the level of airway nerves. Reducing serum insulin with streptozotocin protected neuronal M2 receptor function and prevented airway hyperresponsiveness to vagus nerve stimulation in obese rats. Replacing insulin restored dysfunction of neuronal M2 receptors and airway hyperresponsiveness to vagus nerve stimulation in streptozotocin-treated obese rats. Treatment with insulin caused loss of M2 receptor function, resulting in airway hyperresponsiveness to vagus nerve stimulation in obese-resistant rats, and inhibited human neuronal M2 receptor function in vitro. This study shows that it is not obesity per se but hyperinsulinemia accompanying obesity that potentiates vagally induced bronchoconstriction by inhibiting neuronal M2 muscarinic receptors and increasing acetylcholine release from airway parasympathetic nerves.


British Journal of Pharmacology | 2011

Role of TNF-α in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction

Zhenying Nie; Gregory D. Scott; Patrick D Weis; Asako Itakura; A.D. Fryer; David B. Jacoby

BACKGROUND AND PURPOSE Infections with respiratory viruses induce exacerbations of asthma, increase acetylcholine release and potentiate vagally mediated bronchoconstriction by blocking inhibitory M2 muscarinic receptors on parasympathetic neurons. Here we test whether virus‐induced M2 receptor dysfunction and airway hyperresponsiveness are tumour necrosis factor‐alpha (TNF‐α) dependent.


Molecular Brain Research | 2003

Cytoplasmic retention sites in p190RhoGEF confer anti-apoptotic activity to an EGFP-tagged protein

Junhua Wu; Jinbin Zhai; Hong Lin; Zhenying Nie; Wei Wen Ge; Laura García-Bermejo; Ruth J. Muschel; William W. Schlaepfer; Rafaela Cañete-Soler

p190RhoGEF is a large multi-functional protein with guanine nucleotide exchange (GEF) activity. The C-terminal region of p190RhoGEF is a highly interactive domain that binds multiple factors, including proteins with anti-apoptotic activities. We now report that transfection of EGFP-tagged p190RhoGEF protects Neuro 2a cells from stress-induced apoptosis and that anti-apoptotic activity is localized to cytoplasmic retention sequences (CRS-1 and CRS-2) in the C-terminal region of p190RhoGEF. Cytoplasmic retention is conferred to an EGFP fluorescent marker when fused to either CRS-1 or CRS-2. Both cytoplasmic retention and anti-apoptotic activity are lost by deleting CRS-1 and CRS-2 in the p190RhoGEF sequence and can be recovered by restoring either CRS-1 or CRS-2 to the EGFP-tagged sequence. Since the CRS-1 and CRS-2 contain the JIP-1 and 14-3-3 binding sites, we propose that anti-apoptotic activity may be conferred by the binding of p190RhoGEF to JIP-1 or 14-3-3, possibly by altering their interactive properties or nucleocytoplasmic movements. Taken together, our findings support a model whereby multiple interactions of p190RhoGEF confer homeostatic properties to differentiated neurons and may link neuronal homeostasis to the regulation of NF-L expression.


PLOS ONE | 2012

β2-Agonists Inhibit TNF-α-Induced ICAM-1 Expression in Human Airway Parasympathetic Neurons

Zhenying Nie; A.D. Fryer; David B. Jacoby

Background Major basic protein released from eosinophils to airway parasympathetic nerves blocks inhibitory M2 muscarinic receptors on the parasympathetic nerves, increasing acetylcholine release and potentiating reflex bronchoconstriction. Recruitment of eosinophils to airway parasympathetic neurons requires neural expression of both intercellular adhesion molecular-1 (ICAM-1) and eotaxin. We have shown that inflammatory cytokines induce eotaxin and ICAM-1 expression in parasympathetic neurons. Objective To test whether the β2 agonist albuterol, which is used to treat asthma, changes TNF-alpha-induced eotaxin and ICAM-1 expression in human parasympathetic neurons. Methods Parasympathetic neurons were isolated from human tracheas and grown in serum-free medium for one week. Cells were incubated with either (R)-albuterol (the active isomer), (S)-albuterol (the inactive isomer) or (R,S)-albuterol for 90 minutes before adding 2 ng/ml TNF-alpha for another 4 hours (for mRNA) or 24 hours (for protein). Results and Conclusions Baseline expression of eotaxin and ICAM-1 were not changed by any isomer of albuterol as measured by real time RT-PCR. TNF-alpha induced ICAM-1 expression was significantly inhibited by (R)-albuterol in a dose dependent manner, but not by (S) or (R,S)-albuterol. Eotaxin expression was not changed by TNF-alpha or by any isomer of albuterol. The β-receptor antagonist propranolol blocked the inhibitory effect of (R)-albuterol on TNF-alpha-induced ICAM-1 expression. Clinical Implication The suppressive effect of (R)-albuterol on neural ICAM-1 expression may be an additional mechanism for decreasing bronchoconstriction, since it would decrease eosinophil recruitment to the airway nerves.


Journal of Leukocyte Biology | 2018

Eosinophil and airway nerve interactions in asthma

Matthew G. Drake; Katherine M. Lebold; Quinn R. Roth-Carter; Alexandra Pincus; Emily D. Blum; Becky J. Proskocil; David B. Jacoby; A.D. Fryer; Zhenying Nie

Airway eosinophils are increased in asthma and are especially abundant around airway nerves. Nerves control bronchoconstiction and in asthma, airway hyperreactivity (where airways contract excessively to inhaled stimuli) develops when eosinophils alter both parasympathetic and sensory nerve function. Eosinophils release major basic protein, which is an antagonist of inhibitory M2 muscarinic receptors on parasympathetic nerves. Loss of M2 receptor inhibition potentiates parasympathetic nerve‐mediated bronchoconstriction. Eosinophils also increase sensory nerve responsiveness by lowering neurons’ activation threshold, stimulating nerve growth, and altering neuropeptide expression. Since sensory nerves activate parasympathetic nerves via a central neuronal reflex, eosinophils’ effects on both sensory and parasympathetic nerves potentiate bronchoconstriction. This review explores recent insights into mechanisms and effects of eosinophil and airway nerve interactions in asthma.


Science Translational Medicine | 2018

Eosinophils increase airway sensory nerve density in mice and in human asthma

Matthew G. Drake; Gregory D. Scott; Emily D. Blum; Katherine M. Lebold; Zhenying Nie; James J. Lee; A.D. Fryer; Richard W. Costello; David B. Jacoby

Eosinophils increase airway sensory nerve density in humans with asthma and in mice, which promotes airway hyperresponsiveness. Remodeling airway innervation in asthma Asthma is a widespread chronic airway disease characterized by airway obstruction, inflammation, and hyperresponsiveness. Symptoms such as bronchoconstriction and cough range from mild intermittent to severe persistent. In eosinophilic asthma, the most common form of asthma, eosinophils in the airway alter nerve function and exacerbate the disease. However, whether eosinophils also affect airway nerve structure is unclear. Now, Drake et al. show that in specimens from patients with severe eosinophilic asthma, airway innervation was increased and positively correlated with symptom severity. In mice, eosinophilia increased airway innervation and triggered bronchoconstriction and airway hyperresponsiveness. The results suggest that structural remodeling of airway innervation contributes to symptom severity in eosinophilic asthma. In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.


Methods of Molecular Biology | 2014

Interactions of eosinophils with nerves.

Quinn R. Roth-Carter; David B. Jacoby; Zhenying Nie

Coculture of eosinophils and nerves is a powerful tool in determining the interactions between the two cell types. We have developed methods for culture of parasympathetic ganglia and dorsal root ganglia from humans, and we have further refined the technique to coculture with eosinophils. Here we describe methods for coculturing primary parasympathetic ganglia or dorsal root ganglia with eosinophils.

Collaboration


Dive into the Zhenying Nie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Lin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jinbin Zhai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Junhua Wu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge