Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhi-Qiang Yang is active.

Publication


Featured researches published by Zhi-Qiang Yang.


Journal of Medicinal Chemistry | 2008

Discovery of 1,4-Substituted Piperidines as Potent and Selective Inhibitors of T-Type Calcium Channels

Zhi-Qiang Yang; James C. Barrow; William D. Shipe; Kelly-Ann S. Schlegel; Youheng Shu; F. Vivien Yang; Craig W. Lindsley; Kenneth E. Rittle; Mark G. Bock; George D. Hartman; Victor N. Uebele; Cindy E. Nuss; Steve V. Fox; Richard L. Kraus; Scott M. Doran; Thomas M. Connolly; Cuyue Tang; Jeanine Ballard; Yuhsin Kuo; Emily D. Adarayan; Thomayant Prueksaritanont; Matthew M. Zrada; Michael J. Marino; Valerie Kuzmick Graufelds; Anthony G. DiLella; Ian J. Reynolds; Hugo M. Vargas; Patricia B. Bunting; Richard Woltmann; Michael Magee

The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile. Compound 30 showed good oral bioavailability and brain penetration across species. In a rat genetic model of absence epilepsy, compound 30 demonstrated a robust reduction in the number and duration of seizures at 33 nM plasma concentration, with no cardiovascular effects at up to 5.6 microM. Compound 30 also showed good efficacy in rodent models of essential tremor and Parkinsons disease. Compound 30 thus demonstrates a wide margin between CNS and peripheral effects and is a useful tool for probing the effects of T-type calcium channel inhibition.


Journal of Medicinal Chemistry | 2008

Discovery and X-ray Crystallographic Analysis of a Spiropiperidine Iminohydantoin Inhibitor of β-Secretase‡

James C. Barrow; Shaun R. Stauffer; Kenneth E. Rittle; Phung L. Ngo; Zhi-Qiang Yang; Harold G. Selnick; Samuel L. Graham; Sanjeev Munshi; Georgia B. McGaughey; M. Katharine Holloway; Adam J. Simon; Eric A. Price; Sethu Sankaranarayanan; Dennis Colussi; Katherine Tugusheva; Ming Tain Lai; Amy S. Espeseth; Min Xu; Qian Huang; Abigail Wolfe; Beth Pietrak; Paul Zuck; Dorothy Levorse; Daria J. Hazuda; Joseph P. Vacca

A high-throughput screen at 100 microM inhibitor concentration for the BACE-1 enzyme revealed a novel spiropiperidine iminohydantoin aspartyl protease inhibitor template. An X-ray cocrystal structure with BACE-1 revealed a novel mode of binding whereby the inhibitor interacts with the catalytic aspartates via bridging water molecules. Using the crystal structure as a guide, potent compounds with good brain penetration were designed.


Cell Biochemistry and Biophysics | 2009

Positive allosteric interaction of structurally diverse T-type calcium channel antagonists.

Victor N. Uebele; Cindy E. Nuss; Steven V. Fox; Susan L. Garson; Razvan Cristescu; Scott M. Doran; Richard L. Kraus; Vincent P. Santarelli; Yuxing Li; Æ James C. Barrow; Zhi-Qiang Yang; Kelly-Ann S. Schlegel; Kenneth E. Rittle; Thomas S. Reger; Rodney A. Bednar; Wei Lemaire; Faith A. Mullen; Jeanine Ballard; Cuyue Tang; Ge Dai; Owen B. McManus; Kenneth S. Koblan; John J. Renger

Low-voltage-activated (T-type) calcium channels play a role in diverse physiological responses including neuronal burst firing, hormone secretion, and cell growth. To better understand the biological role and therapeutic potential of the target, a number of structurally diverse antagonists have been identified. Multiple drug interaction sites have been identified for L-type calcium channels, suggesting a similar possibility exists for the structurally related T-type channels. Here, we radiolabel a novel amide T-type calcium channel antagonist (TTA-A1) and show that several known antagonists, including mibefradil, flunarizine, and pimozide, displace binding in a concentration-dependent manner. Further, we identify a novel quinazolinone T-type antagonist (TTA-Q4) that enhanced amide radioligand binding, increased affinity in a saturable manner and slowed dissociation. Functional evaluation showed these compounds to be state-dependent antagonists which show a positive allosteric interaction. Consistent with slowing dissociation, the duration of efficacy was prolonged when compounds were co-administered to WAG/Rij rats, a genetic model of absence epilepsy. The development of a T-type calcium channel radioligand has been used to demonstrate structurally distinct TTAs interact at allosteric sites and to confirm the potential for synergistic inhibition of T-type calcium channels with structurally diverse antagonists.


Bioorganic & Medicinal Chemistry Letters | 2015

Methyl-substitution of an iminohydantoin spiropiperidine β-secretase (BACE-1) inhibitor has a profound effect on its potency

Melissa S. Egbertson; Georgia B. McGaughey; Steven M. Pitzenberger; Shaun R. Stauffer; Craig A. Coburn; Shawn J. Stachel; Wenjin Yang; James C. Barrow; Lou Anne Neilson; Melody Mcwherter; Debra S. Perlow; Bruce Fahr; Sanjeev Munshi; Timothy J. Allison; Katharine M Holloway; Harold G. Selnick; Zhi-Qiang Yang; John Swestock; Adam J. Simon; Sethu Sankaranarayanan; Dennis Colussi; Katherine Tugusheva; Ming Tain Lai; Beth Pietrak; Shari Haugabook; Lixia Jin; I. W. Chen; Marie Holahan; Maria Stranieri-Michener; Jacquelynn J. Cook

The IC50 of a beta-secretase (BACE-1) lead compound was improved ∼200-fold from 11 μM to 55 nM through the addition of a single methyl group. Computational chemistry, small molecule NMR, and protein crystallography capabilities were used to compare the solution conformation of the ligand under varying pH conditions to its conformation when bound in the active site. Chemical modification then explored available binding pockets adjacent to the ligand. A strategically placed methyl group not only maintained the required pKa of the piperidine nitrogen and filled a small hydrophobic pocket, but more importantly, stabilized the conformation best suited for optimized binding to the receptor.


ACS Medicinal Chemistry Letters | 2014

Discovery of naphthyl-fused 5-membered lactams as a new class of m1 positive allosteric modulators.

Zhi-Qiang Yang; Youheng Shu; Lei Ma; Marion Wittmann; William J. Ray; Matthew A. Seager; Kenneth A. Koeplinger; Charles D. Thompson; George D. Hartman; Mark T. Bilodeau; Scott D. Kuduk

Selective activation of the M1 muscarinic receptor via positive allosteric modulation represents an original approach to treat the cognitive decline in patients with Alzheimers disease. A series of naphthyl-fused 5-membered lactams were identified as a new class of M1 positive allosteric modulators and were found to possess good potency and in vivo efficacy.


Archive | 2005

Spiropiperidine compounds useful as beta-secretase inhibitors for the treatment of alzhermer’s disease

James C. Barrow; Craig A. Coburn; Melissa S. Egbertson; Georgia B. McGaughey; Melody Mcwherter; Lou Anne Neilson; Harold G. Selnick; Shaun R. Stauffer; Zhi-Qiang Yang; Wenjin Yang; Wanli Lu; Bruce Fahr; Kenneth E. Rittle


Archive | 2007

Pyridyl amide t-type calcium channel antagonists

James C. Barrow; Thomas S. Reger; Zhi-Qiang Yang


Archive | 2006

4-Fluoro-Piperidine T-Type Calcium Channel Antagonists

James C. Barrow; Craig W. Lindsley; William D. Shipe; Zhi-Qiang Yang; David D. Wisnoski


Archive | 2010

Quinoline amide m1 receptor positive allosteric modulators

Scott D. Kuduk; Kelly Ann S. Schlegel; Zhi-Qiang Yang


Archive | 2006

Quinazolinone t-type calcium channel antagonists

James C. Barrow; Rowena V. Cube; Phung L. Ngo; Kenneth E. Rittle; Zhi-Qiang Yang; Steven D. Young

Collaboration


Dive into the Zhi-Qiang Yang's collaboration.

Researchain Logo
Decentralizing Knowledge