Zhipei Sun
Aalto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhipei Sun.
Nature Photonics | 2010
Francesco Bonaccorso; Zhipei Sun; Tawfique Hasan; A. C. Ferrari
The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.
ACS Nano | 2010
Zhipei Sun; Tawfique Hasan; Felice Torrisi; Daniel Popa; Giulia Privitera; Fengqiu Wang; Francesco Bonaccorso; D. M. Basko; A. C. Ferrari
Graphene is at the center of a significant research effort. Near-ballistic transport at room temperature and high mobility make it a potential material for nanoelectronics. Its electronic and mechanical properties are also ideal for micro- and nanomechanical systems, thin-film transistors, and transparent and conductive composites and electrodes. Here we exploit the optoelectronic properties of graphene to realize an ultrafast laser. A graphene-polymer composite is fabricated using wet-chemistry techniques. Pauli blocking following intense illumination results in saturable absorption, independent of wavelength. This is used to passively mode-lock an erbium-doped fiber laser working at 1559 nm, with a 5.24 nm spectral bandwidth and approximately 460 fs pulse duration, paving the way to graphene-based photonics.
Nanoscale | 2015
A. C. Ferrari; Francesco Bonaccorso; Vladimir I. Fal'ko; K. S. Novoselov; Stephan Roche; Peter Bøggild; Stefano Borini; Vincenzo Palermo; Nicola Pugno; Jose A. Garrido; Roman Sordan; Alberto Bianco; Laura Ballerini; Maurizio Prato; Elefterios Lidorikis; Jani Kivioja; Claudio Marinelli; Tapani Ryhänen; Alberto F. Morpurgo; Jonathan N. Coleman; Valeria Nicolosi; Luigi Colombo; M. García-Hernández; Adrian Bachtold; Grégory F. Schneider; F. Guinea; Cees Dekker; Matteo Barbone; Zhipei Sun; C. Galiotis
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
ACS Nano | 2012
Felice Torrisi; Tawfique Hasan; Weiping Wu; Zhipei Sun; A. Lombardo; T. S. Kulmala; Gen-Wen Hsieh; Sungjune Jung; Francesco Bonaccorso; Philip J. Paul; Daping Chu; A. C. Ferrari
We demonstrate inkjet printing as a viable method for large-area fabrication of graphene devices. We produce a graphene-based ink by liquid phase exfoliation of graphite in N-methylpyrrolidone. We use it to print thin-film transistors, with mobilities up to ∼95 cm(2) V(-1) s(-1), as well as transparent and conductive patterns, with ∼80% transmittance and ∼30 kΩ/□ sheet resistance. This paves the way to all-printed, flexible, and transparent graphene devices on arbitrary substrates.
Scientific Reports | 2015
Diao Li; Henri Jussila; Lasse Karvonen; Guojun Ye; Harri Lipsanen; Xianhui Chen; Zhipei Sun
Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.).Black phosphorus has been recently rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of black phosphorus thin films, indicating that both linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness. Then we employ the nonlinear optical property of black phosphorus for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 {\mu}m. Our results underscore relatively large optical nonlinearity in black phosphorus and its prospective for ultrafast pulse generation, paving the way to black phosphorus based nonlinear and ultrafast photonics applications (e.g., ultrafast all-optical switches/modulators, frequency converters etc.).
Materials Today | 2012
Francesco Bonaccorso; A. Lombardo; Tawfique Hasan; Zhipei Sun; Luigi Colombo; A. C. Ferrari
Graphene is at the center of an ever growing research effort due to its unique properties, interesting for both fundamental science and applications. A key requirement for applications is the development of industrial-scale, reliable, inexpensive production processes. Here we review the state of the art of graphene preparation, production, placement and handling. Graphene is just the first of a new class of two dimensional materials, derived from layered bulk crystals. Most of the approaches used for graphene can be extended to these crystals, accelerating their journey towards applications.
Nature Nanotechnology | 2008
Frank Wang; Aleksey Rozhin; Zhipei Sun; Vittorio Scardaci; I.H. White; Frank Hennrich; W. I. Milne; A. C. Ferrari
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 microm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 microm, and then use it to demonstrate a 2.4 ps Er(3+)-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Applied Physics Letters | 2010
Daniel Popa; Zhipei Sun; Felice Torrisi; Tawfique Hasan; Fengqiu Wang; A. C. Ferrari
Ultrafast fiber lasers with broad bandwidth are in great demand for a variety of applications, such as spectroscopy, biomedical diagnosis, and optical communications. Sub 200 fs pulses are required for ultrafast spectroscopy with high temporal resolution. Graphene is an ideal ultrawide-band saturable absorber. We report the generation of 174 fs pulses from a graphene-based fiber laser.
Nature Photonics | 2016
Zhipei Sun; Amos Martinez; Feng Wang
Light modulation is an essential operation in photonics and optoelectronics. The recent demonstration that two-dimensional layered materials could modulate various light properties (e.g., wavelength, amplitude, phase, and polarization) with superior performance has stimulated intense research and significant advances [1-7], paving the way for realistic photonic and optoelectronic applications [1-10]. I will discuss the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene [4-9], transition metal dichalcogenides [6] and black phosphorus [7]. I will present recent advances employing hybrid structures, such as two-dimensional heterostructures [1], plasmonic structures [10], and silicon/fibre integrated structures [5-10]. I will also take a look at future perspectives of optical modulation technologies with two-dimensional layered materials.
Applied Physics Letters | 2011
Daniel Popa; Zhipei Sun; Tawfique Hasan; Felice Torrisi; Fengqiu Wang; A. C. Ferrari
We demonstrate a wideband-tunable Q-switched fiber laser exploiting a graphene saturable absorber. We get ∼2 μs pulses, tunable between 1522 and 1555 nm with up to ∼40 nJ energy. This is a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics.