Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhixin Miao is active.

Publication


Featured researches published by Zhixin Miao.


Journal of the American Society for Mass Spectrometry | 2009

Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS)

Zhixin Miao; Hao Chen

Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the direct analysis of liquid samples. Several interesting results were found. First, in contrast to the previous DESI analysis of dried solid samples that was limited to proteins with MW ≤25 kDa (Anal. Chem. 2007, 79, 3514), bovine serum albumin (BSA, 66 kDa) was successfully ionized from solutions by DESI with observation of corresponding multiply charged ions. Second, direct DESI analysis of protein tryptic digest solutions without chromatographic separation, sample clean-up, and the sample drying step was demonstrated, providing reasonably good sequence coverage of 52% to 97%. Third, direct analysis of biofluids such as an undiluted urine sample without sample pretreatment is possible, emphasizing the high tolerance of DESI with salt. These results suggest that a charged droplet pick-up mechanism is responsible for desorption and ionization of liquid samples by DESI. Also, unlike in electrospray ionization (ESI), inhibition of electrochemical reduction in the negative ion mode was observed for liquid sample DESI. In addition, reactive DESI can be performed with ion/ion reactions of Zn(II) complexes for the selective binding of phosphoserine in the presence of serine. DESI experiment can also be carried out directly to liquid samples flowing out of a pumped syringe needle tip, allowing rapid analysis. Furthermore, on-line coupling of electrochemical cell with DESI-MS was demonstrated, in which perylene radical cations generated in the cell were successfully transferred to the gas-phase for MS detection by DESI. This study extended the scope of DESI-MS applications, which could have potentials in bioanalytical and forensic analysis.


Analytical Chemistry | 2011

Direct Ionization of Large Proteins and Protein Complexes by Desorption Electrospray Ionization-Mass Spectrometry

Carly N. Ferguson; Sabrina A. Benchaar; Zhixin Miao; Joseph A. Loo; Hao Chen

Desorption electrospray ionization-mass spectrometry (DESI-MS) has advantages for rapid sample analysis with little or no sample pretreatment, but performance for large biomolecules has not been demonstrated. In this study, liquid sample DESI, an extended version of DESI used for analysis of liquid samples, was shown to have capabilities for direct ionization of large noncovalent protein complexes (>45 kDa) and proteins (up to 150 kDa). Protein complex ions (e.g., superoxide dismutase, enolase, and hemoglobin) desorbed from solution by liquid sample DESI were measured intact, indicating the capability of DESI for preserving weak noncovalent interactions. Doping the DESI spray solvent with supercharging reagents resulted in protein complex ions having increased multiple charging without complex dissociation. Ion mobility measurements of model protein cytochrome c showed that the supercharging reagent favored the more compact conformation for the lower charged protein ions. Liquid sample DESI of hydrophobic peptide gramicidin D suggests that the ionization mechanism involves a droplet pick-up mixing process. Measurement of liquid samples significantly extends the mass range of DESI-MS, allowing the analysis of high-mass proteins such as 150 kDa immunoglobulin G (IgG) and thus represents the largest protein successfully ionized by DESI to date.


Analytical Chemistry | 2011

Development of Submillisecond Time-Resolved Mass Spectrometry Using Desorption Electrospray Ionization

Zhixin Miao; Hao Chen; Pengyuan Liu; Yan Liu

Reaction kinetics studied by mass spectrometry (MS) has previously been limited to millisecond time resolution. This paper presents the development of a submillisecond time-resolved mass spectrometric method for fast reaction kinetic study, based on the capability of desorption electrospray ionization (DESI) for direct and fast ionization of a high-speed liquid jet stream. The principle underlying this methodology is that two reactant solutions undergo rapid mixing to produce a free liquid jet which is ionized by DESI at different positions corresponding to different reaction times. Due to the high velocity of the liquid jet, high time resolution can be achieved. In this study, the fast reduction reaction of 2, 6-dichlorophenolindophenol (DCIP) and L-ascorbic acid (L-AA) was chosen as an example to demonstrate this concept, and the reaction rate constant was successfully measured with an unprecedented time resolution of 300 μs. The good agreement of the measured value of (116 ± 3) s(-1) with that measured by the stopped-flow optical method (105 ± 2) s(-1) validates the feasibility of such a DESI-MS approach. Unlike classical spectroscopic techniques that require either chromophoric substrates or labeling, MS is a general detector with high chemical specificity. Therefore, this time-resolved DESI-MS method should find wide applications in fast (bio)chemical reaction investigations.


Journal of the American Society for Mass Spectrometry | 2010

The study of protein conformation in solution via direct sampling by desorption electrospray ionization mass spectrometry

Zhixin Miao; Shiyong Wu; Hao Chen

The direct sampling feature of liquid sample desorption electrospray ionization (DESI) allows the ionization of liquid samples without adding acids/organic solvents (i.e., without sample pretreatment). As a result, it provides a new approach for probing protein conformation in solution. In this study, it has been observed that native protein ions are generated from proteins in water by DESI. Interestingly, the intensities of the resulting protein ions appear to be higher than those generated by ESI of the proteins in water or in ammonium acetate. For protein solutions that already contain acids/organic solvents, DESI can be used to investigate the influences of these denaturants on protein conformations and the obtained results are in good agreement with spectroscopic data. In addition, online monitoring of protein conformational changes by DESI is feasible; for instance, heat-induced unfolding of ubiquitin can be traced with DESI in water without influences of organic solvents/acids. This DESI method provides a new alternative tool for the study of protein conformation in solution.


Journal of Biological Chemistry | 2009

The Role of Nitric-oxide Synthase in the Regulation of UVB Light-induced Phosphorylation of the α Subunit of Eukaryotic Initiation Factor 2

Wei Lu; Csaba F. László; Zhixin Miao; Hao Chen; Shiyong Wu

UV light induces phosphorylation of the α subunit of the eukaryotic initiation factor 2 (eIF2α) and inhibits global protein synthesis. Both eIF2 kinases, protein kinase-like endoplasmic reticulum kinase (PERK) and general control of nonderepressible protein kinase 2 (GCN2), have been shown to phosphorylate eIF2α in response to UV irradiation. However, the roles of PERK and GCN2 in UV-induced eIF2α phosphorylation are controversial. The one or more upstream signaling pathways that lead to the activation of PERK or GCN2 remain unknown. In this report we provide data showing that both PERK and GCN2 contribute to UV-induced eIF2α phosphorylation in human keratinocyte (HaCaT) and mouse embryonic fibroblast cells. Reduction of expression of PERK or GCN2 by small interfering RNA decreases phosphorylation of eIF2α after UV irradiation. These data also show that nitric-oxide synthase (NOS)-mediated oxidative stress plays a role in regulation of eIF2α phosphorylation upon UV irradiation. Treating the cells with the broad NOS inhibitor NG-methyl-l-arginine, the free radical scavenger N-acetyl-l-cysteine, or the NOS substrate l-arginine partially inhibits UV-induced eIF2α phosphorylation. The results presented above led us to propose that NOS mediates UV-induced eIF2α phosphorylation by activation of both PERK and GCN2 via oxidative stress and l-arginine starvation signaling pathways.


Science & Justice | 2013

Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry

Effie Weldy; Chloe Wolff; Zhixin Miao; Hao Chen

From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI).


Archive | 2013

Introduction to Protein Mass Spectrometry

Ismael Cotte-Rodriguez; Zhixin Miao; Yun Zhang; Hao Chen

Proteins fulfill a plethora of biochemical functions within every living organism, and mass spectrometry (MS) has become one of the most powerful and popular modern physical–chemical methods to study the complexities of proteins. In particular, the invention of matrix-assisted laser desorption/ionization (MALDI) [1] and electrospray ionization (ESI) technologies[2, 3] allows one to measure protein molecular weights and sequences, and to probe conformations and post-translational modifications of proteins. In addition, the mass range of species amenable for MS analysis has increased, enabling the transfer of ionized non-covalent species with masses well over one million (e.g., 1.5 MDa 24-Mer flavoprotein vanillyl-alcohol oxidase (VAO) from Penicillium simplicissimum [4]) into the gas phase. These advances moved MS into the range of intact protein oligomers and functional machineries.


International Journal of Mass Spectrometry | 2011

Coupling of single droplet micro-extraction with desorption electrospray ionization-mass spectrometry

Xiaobo Sun; Zhixin Miao; Zongqian Yuan; Peter de B. Harrington; Jennifer Colla; Hao Chen


International Journal of Mass Spectrometry | 2012

Signal and Charge Enhancement for Protein Analysis by Liquid Chromatography-Mass Spectrometry with Desorption Electrospray Ionization

Yan Liu; Zhixin Miao; Rajeswari Lakshmanan; Rachel R. Ogorzalek Loo; Joseph A. Loo; Hao Chen


Archive | 2009

On-line and off-line coupling of EC with DESI-MS

Hao Chen; Jiwen Li; Zhixin Miao; Yun Zhang

Collaboration


Dive into the Zhixin Miao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Loo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge